1. |
Cunha-Vaz J, Ribeiro L, Lobo C. Phenotypes and biomarkers of diabetic retinopathy[J]. Prog Retin Eye Res,2014, 41:90-111. DOI: 10.1016/j.preteyeres.2014.03.003.
|
2. |
He S, Li X, Chan N, et al. Review: epigenetic mechanisms in ocular disease[J]. Mol Vis, 2013, 19:665-674.
|
3. |
Waddington CH. Der epigenotypus[J]. Endeavour, 1942, 1:18-20.
|
4. |
Holliday R. The inheritance of epigenetic defects[J]. Science, 1987, 238(4824):163-170.
|
5. |
Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states[J]. Science, 2010, 330(6004):612-616. DOI:10.1126/science.1191078.
|
6. |
Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development[J]. Science, 2010, 330(6004):622-627. DOI:10.1126/science.1190614.
|
7. |
Rupp RA, Becker PB. Gene regulation by histone H1: new links to DNA methylation[J]. Cell, 2005, 123(7):1178-1179.
|
8. |
Law JA, Jacobsen SE. Molecular biology: dynamic DNA methylation[J]. Science, 2009, 323(5921):1568-1569. DOI: 10.1126/science.1172782.
|
9. |
Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications[J]. Cell, 2000, 103(2):263-271.
|
10. |
Vidanes GM, Bonilla CY, Toczyski DP. Complicated tails: histone modifications and the DNA damage response[J]. Cell, 2005, 121(7):973-976.
|
11. |
Suganuma T, Workman JL. Crosstalk among histone modifications[J]. Cell, 2008, 135(4):604-607. DOI: 10.1016/j.cell.2008.10.036.
|
12. |
Ren B. Transcription: enhancers make non-coding RNA[J]. Nature, 2010, 465(7295):173-174. DOI:10.1038/465173a.
|
13. |
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1):77-94. DOI: 10.1016/j.cell.2014.03.008.
|
14. |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
|
15. |
Chitwood DH, Timmermans MC. Small RNAs are on the move[J]. Nature, 2010, 467(7314):415-419. DOI: 10.1038/nature09351.
|
16. |
Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications[J].JMol Cell Cardiol, 2015, 89(Pt A):42-50. DOI:10.1016/j.yjmcc.2014.12.014.
|
17. |
Knoll M, Lodish HF, Sun L. Long non-coding RNAs as regulators of the endocrine system[J]. Nat Rev Endocrinol, 2015, 11(3):151-160. DOI:10.1038/nrendo.2014.229.
|
18. |
Tewari S, Zhong Q, Santos JM, et al. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(8):4881-4888. DOI: 10.1167/iovs.12-9732.
|
19. |
Maghbooli Z, Hossein-nezhad A, Larijani B, et al. Global DNA methylation asapossible biomarker for diabetic retinopathy[J]. Diabetes Metab Res Rev, 2015, 31(2):183-189. DOI: 10.1002/dmrr.2584.
|
20. |
Maghbooli Z, Larijani B, Emamgholipour S, et al. Aberrant DNA methylation patterns in diabetic nephropathy[J].JDiabetes Metab Disord, 2014, 13:69. DOI:10.1186/2251-6581-13-69.
|
21. |
Niu PP, Cao Y, Gong T, et al. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery disease patients[J].JTransl Med, 2014, 12:170. DOI:10.1186/1479-5876-12-170.
|
22. |
Syreeni A, El-Osta A, Forsblom C, et al. Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes[J]. Diabetes, 2011, 60(11):3073-3080. DOI:10.2337/db11-0073.
|
23. |
El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia[J].JExp Med, 2008, 205(10):2409-2417. DOI:10.1084/jem.20081188.
|
24. |
Romeo G, Liu WH, Asnaghi V, et al. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulatesaproapoptotic program in retinal pericytes[J]. Diabetes, 2002, 51(7):2241-2248.
|
25. |
Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression[J]. Free Radic Biol Med, 2014, 75:129-139. DOI:10.1016/j.freeradbiomed.2014.07.001.
|
26. |
Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(11):7256-7265. DOI: 10.1167/iovs.14-15193.
|
27. |
Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy[J]. Diabetes, 2011, 60(4):1304-1313. DOI: 10.2337/db10-0133.
|
28. |
Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J].JCell Biochem, 2010, 110(6):1306-1313. DOI: 10.1002/jcb.22644.
|
29. |
Kowluru RA, Zhong Q, Kanwar M. Metabolic memory and diabetic retinopathy: role of inflammatory mediators in retinal pericytes[J]. Exp Eye Res, 2010, 90(5):617-623. DOI: 10.1016/j.exer.2010.02.006.
|
30. |
Zhong Q, Kowluru RA. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation[J]. Invest Ophthalmol Vis Sci, 2013, 54(1):244-250. DOI: 10.1167/iovs.12-10854.
|
31. |
Kadiyala CS, Zheng L, Du Y, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC)[J].JBiol Chem, 2012, 287(31):25869-25880. DOI: 10.1074/jbc.M112.375204.
|
32. |
Zhong Q, Kowluru RA. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy[J]. Diabetes, 2013, 62(7):2559-2568. DOI: 10.2337/db12-1141.
|
33. |
Perrone L, Devi TS, Hosoya K, et al. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions[J].JCell Physiol, 2009, 221(1):262-272. DOI: 10.1002/jcp.21852.
|
34. |
Xu S. microRNA expression in the eyes and their significance in relation to functions[J]. Prog Retin Eye Res, 2009, 28(2):87-116. DOI: 10.1016/j.preteyeres.2008.11.003.
|
35. |
Ryan DG, Oliveira-Fernandes M, Lavker RM. MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity[J]. Mol Vis, 2006, 12:1175-1184.
|
36. |
Xu S, Witmer PD, Lumayag S, et al. MicroRNA (miRNA) transcriptome of mouse retina and identification ofasensory organ-specific miRNA cluster[J].JBiol Chem, 2007, 282(34):25053-25066.
|
37. |
Loscher CJ, Hokamp K, Kenna PF, et al. Altered retinal microRNA expression profile inamouse model of retinitis pigmentosa[J]. Genome Biol, 2007, 8(11):R248. DOI:10.1186/gb-2007-8-11-r248.
|
38. |
Karali M, Peluso I, Gennarino VA, et al. miRNeye:amicroRNA expression atlas of the mouse eye[J]. BMC Genomics, 2010,11:715. DOI: 10.1186/1471-2164-11-715.
|
39. |
McArthur K, Feng B, Wu Y, et al. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy[J]. Diabetes, 2011, 60(4):1314-1323. DOI: 10.2337/db10-1557.
|
40. |
Kovacs B, Lumayag S, Cowan C, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2011, 52(7):4402-4409. DOI: 10.1167/iovs.10-6879.
|
41. |
Suárez Y, Fernández-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis[J]. Proc Natl Acad Sci USA, 2008, 105(37):14082-14087. DOI: 10.1073/pnas.0804597105.
|
42. |
Wu JH, Gao Y, Ren AJ, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy[J]. Ophthalmic Res, 2012, 47(4):195-201. DOI: 10.1159/000331992.
|
43. |
Murray AR, Chen Q, Takahashi Y, et al. MicroRNA-200b downregulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model[J]. Invest Ophthalmol Vis Sci, 2013, 54(3):1689-1697. DOI: 10.1167/iovs.12-10921.
|
44. |
Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2011, 52(2):1156-1163. DOI: 10.1167/iovs.10-6293.
|
45. |
Yan B, Tao ZF, Li XM, et al. Aberrant expression of long noncoding RNAs in early diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(2):941-951. DOI: 10.1167/iovs.13-13221.
|
46. |
Liu JY, Yao J, Li XM, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus[J]. Cell Death Dis, 2014, 5:1506. DOI: 10.1038/cddis.2014.466.
|
47. |
Yan B, Yao J, Liu JY, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning asacompeting endogenous RNA[J]. Circ Res, 2015, 116(7):1143-1156. DOI: 10.1161/CIRCRESAHA.116.305510.
|
48. |
Jaé N, Dimmeler S. Long noncoding RNAs in diabetic retinopathy[J]. Circ Res, 2015, 116(7):1104-1106. DOI:10.1161/CIRCRESAHA.115.306051.
|