1. |
Whitmore AV, Libby RT, John SW. Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalized processes?[J]. Prog Retin Eye Res, 2005, 24(6): 639-662.
|
2. |
Foster PJ. The epidemiology of primary angle closure and associated glaucomatous optic neuropathy[J]. Semin Ophthalmol, 2002, 17 (2): 50-58.
|
3. |
Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement[J]. Ophthalmology, 2012, 119 (5): 979-986. DOI: 10.1016/j.ophtha.2011.11.003.
|
4. |
Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea – a review[J]. J Am Coll Nutr, 2006, 25 (2):79-99.
|
5. |
Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (egcg): mechanisms, perspectives and clinical applications[J]. Biochem Pharmacol, 2011, 82 (12): 1807-1821. DOI: 10.1016/j.bcp.2011.07.093.
|
6. |
Tedeschi E, Suzuki H, Menegazzi M. Antiinflammatory action of egcg the main component of green tea, through STAT-1 inhibition[J]. Ann N Y Acad Sci, 2002, 973: 435-437.
|
7. |
Chen JH, Tipoe GL, Liong EC, et al. Green tea polyphenols prevent toxin-induced hepatotoxicity in mice by down-regulating inducible nitric oxide-derived prooxidants[J]. Am J Clin Nutr, 2004, 80 (3): 742-751.
|
8. |
Lorenz M, Wessler S, Follmann E, et al. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation[J]. J Biol Chem, 2004, 279 (7): 6190-6195.
|
9. |
Mandel S, Weinreb O, Amit T, et al. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases[J]. J Neurochem, 2004, 88 (6): 1555-1569.
|
10. |
Mandel SA, Avramovich-Tirosh Y, Reznichenko L, et al. Multifunctional activities of green tea catechins in neuroprotection. modulation of cell survival genes iron-dependent oxidative stress and PKC signalling pathway[J]. Neurosignals, 2005, 14 (1-2): 46-60.
|
11. |
Xie J, Jiang LB, Zhang T, et al. Neuroprotective effects of epigallocatechin-3-gallate (EGCG) in optic nerve crush model in rats[J]. Neurosci Lett, 2010, 479 (1): 26-30. DOI: 10.1016/ j.neulet.2010.05.020.
|
12. |
Chen F, Jiang LB, Shen CY, et al. Neuroprotective effect of epigallocatechin-3-gallate against N-methyl-D-aspartate-induced excitotoxicity in the adult rat retina[J]. Acta Ophthalmol, 2012, 90 (8): 609-615. DOI: 10.1111/j.1755-3768.2012.02502.x.
|
13. |
Sappington RM, Carlson BJ, Crish SD, et al. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice[J]. Invest Ophthalmol Vis Sci, 2010, 51 (1): 207-216. DOI: 10.1167/iovs.09-3947.
|
14. |
Chen H, Wei X, Cho KS, et al. Optic neuropathy due to microbead – induced elevated intraocular pressure in the mouse[J]. Invest Ophthalmol Vis Sci, 2011, 52 (1): 36-44. DOI: 10.1167/iovs.09-5115.
|
15. |
Saeki T, Aihara M, Ohashi M, et al. The efficacy of tonolab in detecting physiological and pharmacological changes of mouse intraocular pressure comparison with TonoPen and microneedle manometery[J]. Curr Eye Res, 2008, 33(3): 247-252. DOI: 10.1080/02713680801919716.
|
16. |
Chiu K, Lau WM, Yeung SC, et al. Retrograde labeling of retinal ganglion cells by application of fluoro-gold on the surface of superior colliculus[J]. J Vis Exp, 2008, 17 (16): 819. DOI: 10.3791/819.
|
17. |
Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats[J]. Invest Ophthalmol Vis Sci, 2000, 41 (11): 3460-3466.
|
18. |
Buckingham BP, Inman DM, Lambert W, et al. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma[J]. J Neurosci, 2008, 28 (11): 2735-2744. DOI: 10.1523/JNEUROSCI.4443-07.2008.
|
19. |
Fitzgerald M, Bartlett CA, Evill L, et al. Secondary degeneration of the optic nerve following partial transection: the benefits of lomerizine[J]. Exp Neurol, 2009, 216 (1): 219-230. DOI: 10.1016/j.expneurol.2008.11.026.
|
20. |
Sharma RK, Netland PA. Early born lineage of retinal neurons express class Ⅲ beta-tubulin isotype[J]. Brain Res, 2007, 1176: 11-17.
|
21. |
Falsini B, Marangoni D, Salgarello T, et al. Effect of epigallocatechin-gallate on inner retinal function in ocular hypertension and glaucoma: a short-term study by pattern electroretinogram[J]. Graefe’s Arch Clin Exp Ophthalmol, 2009, 247 (9): 1223-1233. DOI: 10.1007/s00417-009-1064-z.
|
22. |
Danias J, Lee KC, Zamora MF, et al. Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice[J]. Invest Ophthalmol Vis Sci, 2003, 44 (12): 5151-5162.
|