1. |
Park SJ, Choi Y, Na YM, et al. Intraocular pharmacokinetics of intravitreal aflibercept (Eylea) in a rabbit model[J]. Invest Ophthalmol Vis Sci, 2016, 57(6): 2612-2617. DOI: 10.1167/iovs.16-19204.
|
2. |
Li H, Lei N, Zhang M, et al. Pharmacokinetics of a long-lasting anti-VEGF fusion protein in rabbit[J]. Exp Eye Res, 2012, 97(1): 154-159. DOI: 10.1016/j.exer.2011.09.002.
|
3. |
Xu W, Wang H, Wang F, et al. Testing toxicity of multiple intravitreal injections of bevacizumab in rabbit eyes[J]. Can J Ophthalmol, 2010, 45(4): 386-392. DOI: 10.3129/i10-024.
|
4. |
Tabandeh H, Boscia F, Sborgia A, et al. Endophthalmitis associated with intravitreal injections: office-based setting and operating room setting[J]. Retina, 2014, 34(1): 18-23. DOI: 10.1097/IAE.000000 0000000008.
|
5. |
Agrawal S, Joshi M, Christoforidis JB. Vitreous inflammation associated with intravitreal anti-VEGF pharmacotherapy[J/OL]. Mediators Inflamm, 2013, 2013:943409[2013-11-06]. . DOI: 10.1155/2013/ 943409.
|
6. |
Rayess N, Rahimy E, Storey P, et al. Postinjection endophthalmitis rates and characteristics following intravitreal bevacizumab, ranibizumab, and aflibercept[J]. Am J Ophthalmol, 2016, 165:88-93. DOI: 10.1016/j.ajo.2016.02.028.
|
7. |
Kaur IP, Kakkar S. Nanotherapy for posterior eye diseases[J]. J Control Release, 2014, 193:100-112. DOI: 10.1016/j.jconrel. 2014.05.031.
|
8. |
Ungethüm L, Kenis H, Nicolaes GA, et al. Engineered annexin A5 variants have impaired cell entry for molecular imaging of apoptosis using pretargeting strategies[J]. J Biol Chem, 2010, 286(3): 1903-1910. DOI: 10.1074/jbc.M110.163527.
|
9. |
Abrishami M, Ganavati SZ, Soroush D, et al. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (Avastin) for intravitreal administration[J]. Retina, 2009, 29(5): 699-703. DOI: 10.1097/ IAE.0b013e3181a2f42a.
|
10. |
Davis BM, Normando EM, Guo L, et al. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes[J]. Small, 2014, 10(8): 1575-1584. DOI: 10.1002/smll.201303433.
|
11. |
Nomoto H, Shiraga F, Kuno N, et al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4807-4813. DOI: 10.1167/iovs.08-3148.
|
12. |
Dastjerdi MH, Sadrai Z, Saban DR, et al. Corneal penetration of topical and subconjunctival bevacizumab[J]. Invest Ophthalmol Vis Sci, 2011, 52(12): 8718-8723. DOI: 10.1167/iovs.11-7871.
|
13. |
Moisseiev E, Waisbourd M, Ben-Artsi E, et al. Pharmacokinetics of bevacizumab after topical and intravitreal administration in human eyes[J]. Graefe’s Arch Clin Exp Ophthalmol, 2014, 252(2): 331-337. DOI: 10.1007/s00417-013-2495-0.
|
14. |
Sella R, Gal-Or O, Livny E, et al. Efficacy of topical aflibercept versus topical bevacizumab for the prevention of corneal neovascularization in a rat model[J]. Exp Eye Res, 2016, 146:224-232. DOI: 10.1016/j.exer.2016.03.021.
|
15. |
Motarjemizadeh Q, Aidenloo NS, Sepehri S. A comparative study of different concentrations of topical bevacizumab on the recurrence rate of excised primary pterygium: a short-term follow-up study[J]. Int Ophthalmol, 2016, 36(1): 63-71. DOI: 10.1007/s10792-015-0076-4.
|
16. |
Wang Y, Fei D, Vanderlaan M, et al. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro[J]. Angio-genesis, 2004, 7(4): 335-345. DOI:10.1007/s10456-004-8272-2.
|