1. |
郑志. 糖尿病视网膜病变临床防治: 进展、挑战与展望[J]. 中华眼底病杂志, 2012, 28(3): 209-214. DOI: 10.3760/cma.j.issn.1005-1015.2012.03.001.Zheng Z. Prevention and treatment of diabetic retinopathy: progress, challenges and future prospects[J]. Chin J Ocul Fundus Dis, 2012, 28(3): 209-214. DOI: 10.3760/cma.j.issn.1005-1015.2012.03.001.
|
2. |
Morris SM Jr. ArgⅠnases and ArgⅠnine deficiency syndromes[J]. Curr Opin Clin Nutr Metab Care, 2012, 15(1): 64-70. DOI: 10.1097/MCO.0b013e32834d1a08.
|
3. |
Zhou L, Sun CB, Liu C, et al. Upregulation of ArgⅠnase activity contributes to intracellular ROS production induced by high glucose in H9c2 cells[J]. Int J Clin Exp Pathol, 2015, 8(3): 2728-2736.
|
4. |
Shemyakin A, Kövamees O, Rafnsson A, et al. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus[J]. Circulation, 2012, 126(25): 2943-2950. DOI: 10.1161/CIRCULATIONAHA.112.140335.
|
5. |
Nakano M, Nagaishi K, Konari N, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J]. Sci Rep, 2016, 22(6): 24805. DOI: 10.1038/srep24805.
|
6. |
Yamagishi S, Matsui T. Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy[J]. Curr Pharm Biotechnol, 2011, 12(3): 362-368.
|
7. |
Henno P, Maurey C, Le Pimpec-Barthes F, et al. Is ArgⅠnase a potential drug target in tobacco-induced pulmonary endothelial dysfunction?[J]. Respir Res, 2015, 16: 46. DOI: 10.1186/s12931-015-0196-4.
|
8. |
Delage B, Fennell DA, Nicholson L, et al. ArgⅠnine deprivation and ArgⅠninosuccinate synthetase expression in the treatment of cancer[J]. Int J Cancer, 2010, 126(12): 2762-2772. DOI: 10.1002/ijc.25202.
|
9. |
Tekmen-Clark M, Gleason E. Nitric oxide production and the expression of two nitric oxide synthases in the avian retina[J]. Vis Neurosci, 2013, 30(3): 91-103. DOI: 10.1017/S0952523813000126.
|
10. |
Elms SC, Toque HA, Rojas M, et al. The role of ArgⅠnase Ⅰ in diabetes-induced retinal vascular dysfunction in mouse and rat models of diabetes[J]. Diabetologia, 2013, 56(3): 654-662. DOI: 10.1007/s00125-012-2789-5.
|
11. |
Romero MJ, Iddings JA, Platt DH, et al. Diabetes-induced vascular dysfunction involves ArgⅠnaseⅠ[J]. Am J Physiol Heart Circ Physiol, 2012, 302(1): 159-166. DOI: 10.1152/ajpheart.00774.2011.
|
12. |
Patel C, Rojas M, Narayanan SP, et al. ArgⅠnase as a mediator of diabetic retinopathy[J]. Front Immunol, 2013, 4: 173. DOI: 10.3389/fimmu.2013.00173.
|
13. |
Kuo L, Hein TW. Vasomotor regulation of coronary microcirculation by oxidative stress: role of ArgⅠnase[J]. Front Immunol, 2013, 4: 237. DOI: 10.3389/fimmu.2013.00237.
|
14. |
Kövamees O, Shemyakin A, Pernow J. Effect of ArgⅠnase inhibition on ischemia-reperfusion injury in patients with coronary artery disease with and without diabetes mellitus[J/OL]. PLoS One, 2014, 9(7): 103260[2014-07-29]. . DOI: 10.1371/journal.pone.0103260.
|
15. |
Xiong Y, Yepuri G, Forbiteh M, et al. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis[J]. Autophagy, 2014, 10(12): 2223-2238. DOI: 10.4161/15548627.2014.981789.
|
16. |
Moon J, Do HJ, Cho Y, et al. ArgⅠnase inhibition ameliorates hepatic metabolic abnormalities in obese mice[J/OL]. PLoS One, 2014, 9(7): 103048[2014-07-24]. . DOI: 10.1371/journal.pone.0103048.
|