1. |
Reddy MA, Zhang E. Epigenetic mechanisms in diabetic complications and metabolic memory[J]. Diabetologia, 2015, 58(3): 443-455. DOI: 10.1007/s00125-014-3462-y.
|
2. |
Mahmoud AM, Abd El-Twab SM, Abdel-Reheim ES. Consumption of polyphenol-rich morus alba leaves extract attenuates early diabetic retinopathy: the underlying mechanism[J/OL]. Eur J Nutr, 2016, 2016: E1[2016-04-08]. . DOI: 10.1007/s00394-016-1214-0. [published online ahead of print].
|
3. |
Engerman RL. Progression of incipient diabetic retinopathy during good glycemic control[J]. Diabetes, 1987, 36(7): 808-812.
|
4. |
Kowluru RA, Chan PS. Metabolic memory in diabetes-from in vitro oddity to in vivo problem: role of apoptosis[J]. Brain Res Bull, 2010, 81(2-3): 297-302. DOI: 10.1016/j.brainresbull.2009.05.006.
|
5. |
Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group, Lachin JM, White NH, et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC[J]. Diabetes, 2015, 64(2): 631-642. DOI: 10.2337/db14-0930.
|
6. |
White NH, Sun W, Cleary PA, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial[J]. Arch Ophthalmol, 2008, 126(12): 1707-1715. DOI: 10.1001/archopht.126.12.1707.
|
7. |
Ceriello A. The emerging challenge in diabetes: the " metabolic memory”[J]. Vascul Pharmacol, 2012, 57(5-6): 133-138. DOI: 10.1016/j.vph.2012.05.005.
|
8. |
Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070. DOI: 10.1161/CIRCRESAHA.110.223545.
|
9. |
Li C, Miao X, Li F, et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2017, 2017: 9702820[2017-02-06]. . DOI: 10.1155/2017/9702820.
|
10. |
Zhong Q, Mishra M. Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 3941-3948. DOI: 10.1167/iovs.13-11598.
|
11. |
Voronova V, Zhudenkov K, Helmlinger G. Interpretation of metabolic memory phenomenon using a physiological systems model: what drives oxidative stress following glucose normalization?[J/OL]. PLoS One, 2017, 12(2): 0171781[2017-02-08]. . DOI: 10.1371/journal.pone.0171781.
|
12. |
Sharma S, Saxena S, Srivastav K, et al. Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations[J]. Clin Exp Ophthalmol, 2015, 43(5): 429-436. DOI: 10.1111/ceo.12506.
|
13. |
Serra AM, Waddell J, Manivannan A, et al. CD11b+ bone marrow-derived monocytes are the major leukocyte subset responsible for retinal capillary leukostasis in experimental diabetes in mouse and express high levels of CCR5 in the circulation[J]. Am J Pathol, 2012, 181(2): 719-727. DOI: 10.1016/j.ajpath.2012.04.009.
|
14. |
Elsherbiny NM, Naime M, Ahmad S, et al. Potential roles of adenosine deaminase-2 in diabetic retinopathy[J]. Biochem Biophys Res Commun, 2013, 436(3): 355-361. DOI: 10.1016/j.bbrc.2013.05.023.
|
15. |
Abdul Nasir NA, Agarwal R, Sheikh Abdul Kadir SH, et al. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats[J/OL]. PLoS One, 2017, 12(3): 0174542[2017-03-28]. . DOI: 10.1371/journal.pone.0174542.
|
16. |
Zuwała-Jagiełło J, Pazgan-Simon M, Simon K, et al. Elevated advanced oxidation protein products levels in patients with liver cirrhosis[J]. Acta Biochim Pol, 2009, 56(4): 679-685.
|
17. |
Hirakawa Y, Tanaka T. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease[J/OL]. J Diabetes Investig, 2017, 2017: E1[2017-01-17]. . DOI: 10.1111/jdi.12624. [published online ahead of print].
|
18. |
Chilelli NC, Burlina S, Lapolla A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view [J]. Nutr Metab Cardiovasc Diseases, 2013, 23(10): 913-919. DOI: 10.1016/j.numecd.2013.04.004.
|
19. |
Tang J, Kern TS. Inflammation in diabetic retinopathy[J]. Prog Retin Eye Res, 2011, 30(5): 343-358. DOI: 10.1016/j.preteyeres.2011.05.002.
|
20. |
Jiang T, Chang Q, Cai J, et al. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2016, 2016: 3528274[2016-04-06]. . DOI: 10.1155/2016/3528274.
|
21. |
Chan PS, Kanwar M, Kowluru RA. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory[J]. J Diabetes Complications, 2010, 24(1): 55-63. DOI: 10.1016/j.jdiacomp.2008.10.002.
|
22. |
Mimura I, Tanaka T. New insights into molecular mechanisms of epigenetic regulation in kidney disease[J]. Clin Exp Pharmacol Physiol, 2016, 43(12): 1159-1167. DOI: 10.1111/1440-1681.12663.
|
23. |
Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory[J]. Diabetologia, 2015, 58(3): 443-455. DOI: 10.1007/s00125-014-3462-y.
|
24. |
Chen Z, Miao F, Paterson AD, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort[J]. Proc Natl Acad Sci USA, 2016, 113(21): 3002-3011. DOI: 10.1073/pnas.1603712113.
|
25. |
Mishra M. The role of DNA methylation in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5748-5757. DOI: 10.1167/iovs.16-19759.
|
26. |
Sánchez-Chávez G, Hernández-Ramírez E, Osorio-Paz I, et al. Potential role of endoplasmic reticulum stress in pathogenesis of diabetic retinopathy[J]. Neurochem Res, 2016, 41(5): 1098-1106. DOI: 10.1007/s11064-015-1798-4.
|
27. |
Yu Z, Gong C, Lu B, et al. Dendrobium chrysotoxum Lindl alleviates diabetic retinopathy by preventing retinal inflammation and tight junction protein decrease[J/OL]. J Diabetes Res, 2015, 2015: 518317[2015-01-01]. . DOI: 10.1155/2015/518317.
|
28. |
Zhong Y, Li J, Chen Y, et al. Activation of endoplasmic reticulum stress by hyperglycemia is essential for Müller cell-derive inflammatory cytokine production in diabetes[J]. Diabetes, 2012, 61(2): 492-504. DOI: 10.2337/db11-0315.
|
29. |
Huang C, Wang JJ, Ma JH, et al. Activation of the UPR protects against cigarette smoke-induced RPE apoptosis through up-regulation of Nrf2[J]. J Biol Chem, 2015, 290(9): 5367-5380. DOI: 10.1074/jbc.M114.603738.
|
30. |
Gomes MB. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases[J]. Diabetol Metab Syndr, 2014, 6(1): 80. DOI: 10.1186/1758-5996-6-80.
|
31. |
Zhang L, Xia H, Han Q. Effects of antioxidant gene therapy on the development of diabetic retinopathy and the metabolic memory phenomenon[J]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 253(2): 249-259. DOI: 10.1007/s00417-014-2827-8.
|