1. |
Menno VLC, Jennifer L, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. DOI: 10.1002/path.4266.
|
2. |
Zhao C, Wang Q, Temple S. Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells[J]. Development, 2017, 144(8): 1368-1381.DOI: 10.1242/dev.133108.
|
3. |
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI: 10.1016/S0140-6736(12)60028-2.
|
4. |
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3.
|
5. |
Treharne AJ, Grossel MC, Lotery AJ, et al. The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control[J]. Br J Ophthalmol, 2011, 95(6): 768-773. DOI: 10.1136/bjo.2010.184002.
|
6. |
Singhal S, Vemuganti GK. Primary adult human retinal pigment epithelial cell cultures on human amniotic membranes[J]. Indian J Ophthalmol, 2005, 53(2): 109-113. DOI: 10.4103/0301-4738.16174.
|
7. |
Kiilgaard JF, Wiencke AK, Scherfig E, et al. Transplantation of allogenic anterior lens capsule to the subretinal space in pigs[J]. Acta Ophthalmol Scand, 2002, 80(1): 76-81. DOI: 10.1034/j.1600-0420.2002.800115.x.
|
8. |
Beutel J, Greulich L, Lüke M, et al. Inner limiting membrane as membranous support in RPE sheet-transplantation[J]. Graefe's Arch Clin Exp Ophthalmol, 2007, 245(10): 1469-1473. DOI: 10.1007/s00417-007-0566-9.
|
9. |
Binder S. Scaffolds for retinal pigment epithelium (RPE) replacement therapy[J]. Br J Ophthalmol, 2011, 95(4): 441-442. DOI: 10.1136/bjo.2009.171926.
|
10. |
Lu JT, Lee CJ, Bent SF, et al. Thin collagen film scaffolds for retinal epithelial cell culture[J]. Biomaterials, 2007, 28(28): 1486-1494. DOI: 10.1016/j.biomat-erials.2006.11.023.
|
11. |
Thumann G, Viethen A, Gaebler A, et al. The in vitro and in vivo behaviour of retinal pigment epithelial cells cultured on ultrathin collagen membranes[J]. Biomaterials, 2009, 30(30): 287-294. DOI: 10.1016/j.biomaterials.2008.09.039.
|
12. |
Nita M, Strzałkamrozik B, Grzybowski A, et al. Age-related macular degeneration and changes in the extracellular matrix[J]. Med Sci Monit, 2014, 20(20): 1003-1016. DOI: 10.12659/MSM.889887.
|
13. |
Rose JB, Pacelli S, Aje H, et al. Gelatin-based materials in ocular tissue engineering[J]. Materials, 2014, 7(4): 3106. DOI: 10.3390/ma7043106.
|
14. |
Shadforth A, Suzuki S, Alzonne R, et al. Incorporation of human recombinant tropoelastin into silk fibroin membranes with the view to repairing bruch’s membrane[J]. J Funct Biomater, 2015, 6(3): 946-962. DOI: 10.3390/jfb6030946.
|
15. |
Binder S. Scaffolds for retinal pigment epithelium (RPE) replacement therapy[J]. Br J Ophthalmol, 2011, 95(4): 441-442. DOI: 10.1136/bjo.2009.171926.
|
16. |
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers (Basel), 2011, 3(3): 1377-1397. DOI: 10.3390/polym3031377.
|
17. |
Lu L, Nyalakonda K, Kam L, et al. Retinal pigment epithelial cell adhesion on novel micropatterned surfaces fabricated from synthetic biodegradable polymers[J]. Biomaterials, 2001, 22(3): 291-297. DOI: 10.1016/S0142-9612(00)00179-4.
|
18. |
Thomson H, Treharne AJ, Walker P, et al. Optimisation of polymer scaffolds for retinal pigment epithelium (RPE) cell transplantation[J]. Br J Ophthalmol, 2011, 95(4): 563-568. DOI: 10.1136/bjo.2009.166728.
|
19. |
Shahmoradi S, Yazdian F, Tabandeh F, et al.Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells[J].Mater Sci Eng C Mater Biol Appl, 2017, 73:300-309.DOI: 10.1016/j.msec.2016.11.076.
|
20. |
Hu Y, Liu L, Lu B, et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer[J]. Ophthalmic Res, 2012, 48(4): 186-191. DOI: 10.1159/000338749.
|
21. |
Peng CH, Chuang JH, Wang ML, et al. Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo[J]. Oncotarget, 2016, 7(40): 64631-64648. DOI: 10.18632/oncotarget.11502.
|
22. |
da Silva GR, Junior Ada S, Saliba JB, et al. Polyurethanes as supports for human retinal pigment epithelium cell growth[J]. Int J Artif Organs, 2011, 34(2): 198-209. DOI: 10.5301/IJAO.2011.6398.
|
23. |
Yunping LI, Tang L. Comparison of growth of human fetal RPE cells on electrospun nanofibers and etched pore polyester membranes[J]. J Cent South Univ Medical Sci, 2012, 37(5): 433-440. DOI: 10.3969/jssn.1672-7347.2012.05.001.
|
24. |
Warnke PH, Alamein M, Skabo S, et al. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers[J]. Acta Biomater, 2013, 9(12): 9414-9422. DOI: 10.1016/j.actbio.2013.07.029.
|
25. |
Xiang P, Wu KC, Zhu Y, et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells[J]. Biomaterials, 2014, 35(37): 9777-9788. DOI: 10.1016/j.biomaterials. 2014.08.040.
|
26. |
da Silva GR, da Silva-Cunha A Jr, Vieira LC, et al. Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth[J].J Mater Sci Mater Med, 2013, 24(5): 1309-1317. DOI: 10.1007/s10856-013-4885-6.
|
27. |
Timakova KA, Tarasov AV, Fedotov YA, et al. Modification of polymer films, coatings, and membranes[J]. Pet Chem, 2012, 52(7): 505-513. DOI: 10.1134/S096554411207016X.
|
28. |
Treharne AJ, Thomson HAJ, Grossel MC, et al. Developing methacrylate-based copolymers as an artificial Bruch’s membrane substitute[J]. J Biomed Mater Res A, 2012, 100(9): 2358-2364. DOI: 10.1002/jbm.a.34178.
|
29. |
Kearns V, Mistry A, Mason S, et al. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration[J]. J Mater Sci Mater Med, 2013, 28(8): 2013-2021. DOI: 10.1007/s10856-012-4675-6.
|
30. |
Kundu J, Michaelson A, Baranov P, et al. Approaches to cell delivery: substrates and scaffolds for cell therapy[J]. Dev Ophthalmol, 2014, 53:143-154. DOI: 10.1159/000357369.
|
31. |
Sistiabudi R, Paderi J, Panitch A, et al. Modification of native collagen with cell-adhensive peptide to promote RPE cell attachment on bruch’s membrane[J]. Biotechnol Bioeng, 2009, 102(6): 1723-1729. DOI: 10.1002/bit.22215.
|
32. |
Calejo MT, Ilmarinen T, Jongprasitkul H, et al. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium[J]. J Biomed Mater Res A, 2016, 104(7): 1646-1656. DOI: 10.1002/jbm.a.35690.
|
33. |
Liu Z, Yu N, Holz FG, et al. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography[J]. Biomaterials, 2014, 35(9): 2837-2850. DOI: 10.1016/j.biomaterials.2013.12.069.
|
34. |
Lu B, Zhu D, Hinton D, et al. Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells[J]. Biomed Microdevices, 2012, 14(4): 659-667. DOI: 10.1007/s10544-012-9645-8.
|
35. |
Stanzel BV, Liu Z, Brinken R, et al. Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation[J]. Investig Ophthalmol Vis Sci, 2012, 53(1): 490-500. DOI: 10.1167/iovs.11-8260.
|