1. |
Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy[J]. Dev Cell, 2004, 6(4): 463-477.
|
2. |
Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating[J]. Cell Death Differ, 2005, 12 Suppl 2: S1542-1552. DOI: 10.1038/sj.cdd.4401765.
|
3. |
Zhang J, Bai Y, Huang L, et al. Protective effect of autophagy on human retinal pigment epithelial cells against lipofuscin fluorophore A2E: implications for age-related macular degeneration[J/OL]. Cell Death Dis, 2015, 6: 1972[2015-11-12]. http://dx.doi.org/10.1038/cddis.2015.330. DOI:10.1038/cddis.2015.330.
|
4. |
Liu J, Copland DA, Theodoropoulou S, et al. Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis[J/OL]. Sci Rep, 2016, 6: 20639[2016-02-05]. http://dx.doi.org/10.1038/srep20639. DOI:10.1038/srep20639.
|
5. |
Jia G, Su L, Singhal S, et al. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging[J]. Mol Cell Biochem, 2012, 364(1-2): 345-350. DOI:10.1007/s11010-012-1236-8.
|
6. |
Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice[J]. Nature, 2012, 483(7388): 218-221. DOI:10.1038/nature10815.
|
7. |
Yu SS, Cai Y, Ye JT, et al. Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-kappaB-dependent transcriptional activity[J]. Br J Pharmacol, 2013, 168(1): 117-128. DOI:10.1111/j.1476-5381.2012.01903.x.
|
8. |
Ban N, Ozawa Y, Inaba T, et al. Light-dark condition regulates sirtuin mRNA levels in the retina[J]. Exp Gerontol, 2013, 48(11): 1212-1217. DOI:10.1016/j.exger.2013.04.010.
|
9. |
Orellana ME, Quezada C, Maloney SC, et al. Expression of SIRT2 and SIRT6 in retinoblastoma[J]. Ophthalmic Res, 2015, 53(2): 100-108. DOI:10.1159/000368718.
|
10. |
Ravikumar B, Futter M, Jahreiss L, et al. Mammalian macroautophagy at a glance[J]. J Cell Sci, 2009, 122(Pt 11): 1707-1711. DOI:10.1242/jcs.031773.
|
11. |
Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1): 27-42.
|
12. |
Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery[J]. Mol Biol Cell, 2009, 20(7): 1992-2003. DOI:10.1091/mbc.E08.
|
13. |
Li X, He L, Che KH, et al. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG[J/OL]. Nat Commun, 2012, 3: 662[2012-02-07]. http://dx.doi.org/10.1038/ncomms1648. DOI:10.1038/ncomms1648.
|
14. |
Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease--locating the primary defect[J]. Neurobiol Dis, 2011, 43(1): 38-45. DOI:10.1016/j.nbd.2011.01.021.
|
15. |
Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and Foxo signaling[J]. Cell, 2013, 154(2): 430-441. DOI:10.1016/j.cell.2013.06.016.
|
16. |
Cuervo AM, Bergamini E, Brunk UT, et al. Autophagy and aging: the importance of maintaining "clean" cells[J]. Autophagy, 2005, 1(3): 131-140.
|
17. |
Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity?[J]. Nat Cell Biol, 2010, 12(9): 842-846. DOI:10.1038/ncb0910-842.
|
18. |
Taneike M, Yamaguchi O, Nakai A, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy[J]. Autophagy, 2010, 6(5): 600-606. DOI:10.4161/auto.6.5.11947.
|
19. |
Vellai T. Autophagy genes and ageing[J]. Cell Death Differ, 2009, 16(1): 94-102. DOI:10.1038/cdd.2008.126.
|
20. |
Simonsen A, Cumming RC, Brech A, et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila[J]. Autophagy, 2008, 4(2): 176-184.
|
21. |
Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging[J]. Circ Res, 2014, 114(2): 368-378. DOI:10.1161/circresaha.113.300536.
|
22. |
Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration[J]. Mol Aspects Med, 2012, 33(4): 399-417. DOI:10.1016/j.mam.2012.03.009.
|
23. |
Sanchez-Fidalgo S, Villegas I, Sanchez-Hidalgo M, et al. Sirtuin modulators: mechanisms and potential clinical implications[J]. Curr Med Chem, 2012, 19(15): 2414-2441.
|
24. |
Shao J, Yang X, Liu T, et al. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290. DOI:10.1007/s13238-016-0257-6.
|
25. |
Lerrer B, Cohen HY. The guardian: metabolic and tumour-suppressive effects of SIRT6[J]. EMBO J, 2013, 32(1): 7-8. DOI:10.1038/emboj.2012.332.
|
26. |
Lyssiotis CA, Cantley LC. SIRT6 puts cancer metabolism in the driver’s seat[J]. Cell, 2012, 151(6): 1155-1156. DOI:10.1016/j.cell.2012.11.020.
|
27. |
Cardus A, Uryga AK, Walters G, et al. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence[J]. Cardiovasc Res, 2013, 97(3): 571-579. DOI:10.1093/cvr/cvs352.
|
28. |
Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell, 2006, 124(2): 315-329. DOI:10.1016/j.cell.2005.11.044.
|
29. |
Berryman DE, Christiansen JS, Johannsson G, et al. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models[J]. Growth Horm IGF Res, 2008, 18(6): 455-471. DOI:10.1016/j.ghir.2008.05.005.
|
30. |
Zhong L, D’urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha[J]. Cell, 2010, 140(2): 280-293. DOI:10.1016/j.cell.2009.12.041.
|
31. |
Silberman DM, Ross K, Sande PH. SIRT6 is required for normal retinal function[J/OL]. PLoS One, 2014, 9(6): 98831[2014-06-04]. http://dx.plos.org/10.1371/journal.pone.0098831. DOI: 10.1371/journal.pone.0098831.
|
32. |
Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun[J]. Nat Med, 2012, 18(11): 1643-1650. DOI:10.1038/nm.2961.
|
33. |
Xiao C, Wang RH, Lahusen TJ, et al. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice[J]. J Biol Chem, 2012, 287(50): 41903-41913. DOI:10.1074/jbc.M112.415182.
|
34. |
Rodriguez-Muela N, Koga H, Garcia-Ledo L, et al. Balance between autophagic pathways preserves retinal homeostasis[J]. Aging cell, 2013, 12(3): 478-488. DOI:10.1111/acel.12072.
|
35. |
Krohne TU, Stratmann NK, Kopitz J, et al. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells[J]. Exp Eye Res, 2010, 90(3): 465-471. DOI:10.1016/j.exer.2009.12.011.
|
36. |
Feng Y, Liang J, Zhai Y, et al. Autophagy activated by SIRT6 regulates Abeta induced inflammatory response in RPEs[J]. Biochem Biophys Res Commun, 2018, 496(4): 1148-1154. DOI:10.1016/j.bbrc.2018.01.159.
|
37. |
Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes[J]. Aging, 2012, 4(3): 166-175.
|
38. |
Wang L, Ebrahimi KB, Chyn M, et al. Biology of p62/sequestosome-1 in age-related macular degeneration (AMD)[J]. Adv Exp Med Biol, 2016, 854: 17-22. DOI:10.1007/978-3-319-17121-0_3.
|
39. |
Wang Y, Hanus JW, Abu-Asab MS, et al. NLRP3 upregulation in retinal pigment epithelium in age-related macular degeneration[J/OL]. Int J Mol Sci, 2016, 17(1): 73[2016-01-08]. http://www.mdpi.com/resolver?pii=ijms17010073. DOI:10.3390/ijms17010073.
|
40. |
Tanaka Y, Kume S, Kitada M, et al. Autophagy as a therapeutic target in diabetic nephropathy[J/OL]. Exp Diabetes Res, 2012, 2012: 628978[2011-10-19]. https://dx.doi.org/10.1155/2012/628978. DOI:10.1155/2012/628978.
|
41. |
Wang W, Wang Q, Wan D, et al. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy[J]. Autophagy, 2017, 13(5): 941-954. DOI:10.1080/15548627.2017.1293768.
|
42. |
Mao J, Xia Q, Liu C, et al. A critical role of Hrd1 in the regulation of optineurin degradation and aggresome formation[J]. Hum Mol Genet, 2017, 26(10): 1877-1889. DOI:10.1093/hmg/ddx096.
|
43. |
Takasaka N, Araya J, Hara H, et al. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence[J]. J Immunol, 2014, 192(3): 958-968. DOI:10.4049/jimmunol.1302341.
|