1. |
Wei Q, Zhang T, Jiang R, et al. Vitreous fibronectin and fibrinogen expression increased in eyes with proliferative diabetic retinopathy after intravitreal anti-VEGF therapy[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5783-5791. DOI: 10.1167/iovs.17-22345.
|
2. |
Geest RJV, Lesnikoberstein SY, Tan HS, et al. A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2012, 96(4): 587-590. DOI: 10.1136/bjophthalmol-2011-301005.
|
3. |
胡博杰, 曾勍, 刘新玲, 等. Avastin玻璃体腔注射后糖尿病视网膜病变增生膜中细胞因子的变化[J]. 中华实验眼科杂志, 2013, 31(1): 55-59. DOI: 10.3760/cma.j.issn.2095-0160.2013.01.013.Hu BJ, Zeng Q, Liu XL, et al. Influence of intravitreal avastin on the expression of cell factors in retinal proliferative membrane in proliferative diabetic retinopathy eye[J]. Chin J Exp Ophthalmol, 2013, 31(1): 55-59. DOI: 10.3760/cma.j.issn.2095-0160.2013.01.013.
|
4. |
Mi VDR, La Heij EC, De JY, et al. A systematic review of the adverse events of intravitreal anti-vascular endothelial growth factor injections[J]. Retina, 2011, 31(8): 1449-1469. DOI: 10.1097/IAE.0b013e3182278ab4.
|
5. |
Zhang M, Chu S, Zeng F, et al. Bevacizumab modulates the process of fibrosis in vitro.[J]. Clin Exp Ophthalmol, 2015, 43(2): 173-179. DOI: 10.1111/ceo.12374.
|
6. |
Arevalo J, Maia MHJ, Saravia M, et al. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2008, 92(2): 213-216. DOI: 10.1136/bjo.2007.127142.
|
7. |
Jonas JB, Schmidbauer M, Rensch F. Progression of tractional retinal detachment following intravitreal bevacizumab[J]. Acta Ophthalmol, 2009, 87(5): 571-572. DOI: 10.1111/j.1755-3768.2008.01225.x.
|
8. |
Batman C, Ozdamar Y. The relation between bevacizumab injection and the formation of subretinal fibrosis in diabetic patients with panretinal photocoagulation[J]. Ophthalmic Surg Lasers Imaging, 2010, 41(2): 190-195. DOI: 10.3928/15428877-20100303-06.
|
9. |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57-63. DOI: 10.1038/nrg2484.
|
10. |
Xiang L, Chen GH, Wei YZ, et al. Genome-wide transcriptional analysis of maize endosperm in response to ae wx double mutations[J]. J Genet Genomics, 2010, 37(11): 749-762. DOI: 10.1016/S1673-8527(09)60092-8.
|
11. |
Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders[J]. Cell, 2000, 103(2): 295-309.
|
12. |
Liu JC, Wang F, Xie ML, et al. Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts[J]. Int J Cardiol, 2017, 228: 388-393. DOI: 10.1016/j.ijcard.2016.11.202.
|
13. |
Cui L, Wang Y, Yu R, et al. Jia-Shen decoction-medicated serum inhibits angiotensin-Ⅱ induced cardiac fibroblast proliferation via the TGF-β1/Smad signaling pathway[J]. Mol Med Rep, 2016, 14(2): 1610-1616. DOI: 10.3892/mmr.2016.5405.
|
14. |
Ihn H. Pathogenesis of fibrosis: role of TGF-beta and CTGF[J]. Curr Opin Rheumatol, 2002, 14(6): 681-685.
|
15. |
Hung CM, Kuo DH, Chou CH, et al. Osthole suppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells[J]. J Agric Food Chem, 2011, 59(17): 9683-9690. DOI: 10.1021/jf2021489.
|
16. |
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling[J]. FEBS Lett, 2012, 586(14): 1871-1884. DOI: 10.1016/j.febslet.2012.05.010.
|
17. |
Massagué J, Xi Q. TGF-β control of stem cell differentiation genes[J]. FEBS Lett, 2012, 586(14): 1953-1958. DOI: 10.1016/j.febslet.2012.03.023.
|
18. |
Santalla M, Valverde CA, Harnichar E, et al. Aging and CaMKⅡ alter intracellular Ca2+ transients and heart rhythm in Drosophila melanogaster[J/OL]. PLoS One, 2014, 9(7): 101871[2014-07-08]. http://dx.plos.org/10.1371/journal.pone.0101871. DOI: 10.1371/journal.pone.0101871.
|
19. |
Mukherjee S, Sheng W, Sun R, et al. Ca2+/calmodulin-dependent protein kinase Ⅱβ and Ⅱδ mediate TGFβ-induced transduction of fibronectin and collagen in human pulmonary fibroblasts[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(4): 510-519. DOI: 10.1152/ajplung.00084.2016.
|
20. |
Li X, Wu Z, Ni J, et al. Cathepsin B regulates collagen expression by fibroblasts via prolonging TLR2/NF-κB activation[J/OL]. Oxid Med Cell Longev, 2016, 2016(7): 7894247[2016-08-28]. https://dx.doi.org/10.1155/2016/7894247. DOI: 10.1155/2016/7894247.
|
21. |
Man KNM, Philipsen S, Tan-Un KC. Localization and expression pattern of cytoglobin in carbon tetrachloride-induced liver fibrosis[J]. Toxicol Lett, 2008, 183(1-3): 36-44. DOI: 10.1016/j.toxlet.2008.09.015.
|
22. |
Li YJ, Wang XQ, Sato T, et al. Prostaglandin E2 inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors[J]. Am J Respir Cell Mol Biol, 2011, 44(1): 99-107. DOI: 10.1165/rcmb.2009-0163OC.
|
23. |
Nakanishi M, Sato T, Li Y, et al. Prostaglandin E2 stimulates the production of vascular endothelial growth factor through the E-prostanoid–2 receptor in cultured human lung fibroblasts[J]. Am J Respir Cell Mol Biol, 2012, 46(2): 217-223. DOI: 10.1165/rcmb.2010-0115OC.
|
24. |
Bonanno A, Albano GD, Siena L, et al. Prostaglandin E2 possesses different potencies in inducing vascular endothelial growth factor and interleukin-8 production in COPD human lung fibroblasts[J]. Prostaglandins Leukot Essent Fatty Acids, 2016, 106: 11-18. DOI: 10.1016/j.plefa.2016.01.005.
|
25. |
Gao L, Liu B, Mao W, et al. PTGER2 activation induces PTGS-2 and growth factor gene expression in endometrial epithelial cells of cattle[J]. Anim Reprod Sci, 2017, 187: 54-63. DOI: 10.1016/j.anireprosci.2017.10.005.
|
26. |
Maybin JA, Barcroft J, Thiruchelvam U, et al. The presence and regulation of connective tissue growth factor in the human endometrium[J]. Hum Reprod, 2012, 27(4): 1112-1121. DOI: 10.1093/humrep/der476.
|
27. |
Maybin JA, Nikhil H, Jabbour HN, et al. Novel roles for hypoxia and prostaglandin E2 in the regulation of IL-8 during endometrial repair[J]. Am J Pathol, 2011, 178(3): 1245-1256. DOI: 10.1016/j.ajpath.2010.11.070.
|
28. |
Jabbour HN, Boddy SC. Prostaglandin E2 induces proliferation of glandular epithelial cells of the human endometrium via extracellular regulated kinase 1/2-mediated pathway[J]. J Clin Endocrinol Metab, 2003, 88(9): 4481-4487. DOI: 10.1210/jc.2003-030297.
|
29. |
Kato K, Zemskova MA, Hanss AD, et al. Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis[J]. Biochem Biophys Res Commun, 2017, 493(3): 1230-1235. DOI: 10.1016/j.bbrc.2017.09.047.
|
30. |
Zhang L, Gallup M, Zlock L, et al. Pivotal role of MUC1 glycosylation by cigarette smoke in modulating disruption of airway adherens junctions in vitro[J]. J Pathol, 2015, 234(1): 60-73. DOI: 10.1002/path.4375.
|
31. |
Albertsmeyer AC, Kakkassery V, Spurrmichaud S, et al. Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells[J]. Exp Eye Res, 2010, 90(3): 444-451. DOI: 10.1016/j.exer.2009.12.009.
|
32. |
Beatty PL, Plevy SE, Sepulveda AR, et al. Cutting edge: transgenic expression of human MUC1 in IL-10-/- mice accelerates inflammatory bowel disease and progression to colon cancer[J]. J Immunol, 2007, 179(2): 735-739.
|
33. |
Cascio S, Finn OJ. Intra- and extra-cellular events related to altered glycosylation of MUC1 promote chronic inflammation, tumor progression, invasion, and metastasis[J/OL]. Biomolecules, 2016, 6(4): 39[2016-10-13]. http://www.mdpi.com/resolver?pii=biom6040039. DOI: 10.3390/biom6040039.
|
34. |
Sedita J, Izvolsky K, Cardoso WV. Differential expression of heparan sulfate 6-O-sulfotransferase isoforms in the mouse embryo suggests distinctive roles during organogenesis[J]. Dev Dyn, 2004, 231(4): 782-794. DOI: 10.1002/dvdy.20173.
|
35. |
Song K, Li Q, Peng YB, et al. Silencing of hHS6ST2 inhibits progression of pancreatic cancer through inhibition of Notch signalling[J]. Biochem J, 2011, 436(2): 271-282. DOI: 10.1042/BJ20110297.
|
36. |
Wang W, Ju X, Sun Z, et al. Overexpression of heparan sulfate 6-O-sulfotransferase-2 enhances fibroblast growth factor-mediated chondrocyte growth and differentiation[J]. Int J Mol Med, 2015, 36(3): 825-832. DOI: 10.3892/ijmm.2015.2272.
|