1. |
Valverde AM, Miranda S, García-Ramírez M, et al. Proapoptotic and survival signaling in the neuroretina at early stages of diabetic retinopathy[J]. Mol Vis, 2013, 19: 47-53.
|
2. |
Oshitari T, Yamamoto S, Hata N, et al. Mitochondria-and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy[J]. Br J Ophthalmol, 2008, 92(4): 552-556. DOI: 10.1136/bjo.2007.132308.
|
3. |
Khalfaoui T, Basora N, Ouertani-Meddeb A. Apoptotic factors (Bcl-2 and Bax) and diabetic retinopathy in type 2 diabetes[J]. J Mol Histol, 2010, 41(2-3): 143-152. DOI: 10.1007/s10735-010-9271-9.
|
4. |
Hsieh JY, Wang HW, Chang SJ, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis[J/OL]. PLoS One, 2013, 8(8): 72604[2013-08-22]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072604. DOI: 10.1371/journal.pone.0072604.
|
5. |
Kusuma GD, Carthew J, Lim R, et al. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect[J]. Stem Cells Dev, 2017, 26(9): 617-631. DOI: 10.1089/scd.2016.0349.
|
6. |
Lamichhane TN, Sokic S, Schardt JS, et al. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine[J]. Tissue Eng Part B Rev, 2015, 21(1): 45-54. DOI: 10.1089/ten.TEB.2014.0300.
|
7. |
Mead B, Logan A, Berry M. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells[J/OL]. PLoS One, 2014, 9(10): 109305[2014-10-07].http://dx.plos.org/10.1371/journal.pone.0109305. DOI: 0.1371/journal.pone.0109305.
|
8. |
Xia J, Luo M, Ni N, et al. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells[J/OL]. PLoS One, 2013, 8(9): 76157[2013-09-30]. http://dx.plos.org/10.1371/journal.pone.0076157. DOI: 10.1371/journal.pone.0076157. eCollection 2013.
|
9. |
董蒙, 张惟, 陈松, 等. 玻璃体腔移植人脐带间充质干细胞诱导的神经干细胞对糖尿病大鼠血-视网膜屏障的保护作用[J].中华眼科杂志, 2017, 53(1): 53-58.DOI: 10.3760/cma.j.issn.0412-4081.2017.01.011.Dong M, Zhang W, Chen S, et al. The protective effect of human umbilical cord mesenchymal stem cells-induced neural stem cells in the vitreous on the blood-retinal barrier in diabetic rats[J]. Chin J Ophthalmol, 2017, 53(1): 53-58.DOI: 10.3760/cma.j.issn.0412-4081.2017.01.011.
|
10. |
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.DOI: 10.1083/jcb.201211138.
|
11. |
Raisi A, Azizi S, Delirezh N, et al. The mesenchymal stem cell-derived microvesicles enhance sciatic nerve regeneration in rat: a novel approach in peripheral nerve cell therapy[J]. J Trauma Acute Care Surg, 2014, 76(4): 991-997. DOI: 10.1097/TA.0000000000000186.
|
12. |
Lin SS, Zhu B, Guo ZK, et al. Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway[J]. Neurochem Res, 2014, 39(5): 922-931. DOI: 10.1007/s11064-014-1288-0.
|
13. |
Farinazzo A, Turano E, Marconi S, et al.Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuroregenerative approaches[J].Cytotherapy, 2015, 17(5): 571-578. DOI: 10.1016/j.jcyt.2015.01.005.
|
14. |
Tsutsumi T, Iwao K, Hayashi H, et al. Potential neuroprotective effects of an LSD1 inhibitor in retinal ganglion cells via p38 MAPK activity[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6461-6473. DOI: 10.1167/iovs.16-19494.
|
15. |
Greening DW, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods[J]. Methods Mol Biol, 2015, 1295: 179-209. DOI: 10.1007/978-1-4939-2550-6_15.
|
16. |
Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes[J]. Annu Rev Biophys, 2010, 39: 407-427. DOI: 10.1146/annurev.biophys.093008.131234.
|
17. |
Hugel B, Martínez MC, Kunzelmann C, et al.Membrane microparticles: two sides of the coin[J]. Physiology (Bethesda), 2005, 20: 22-27. DOI: 10.1152/physiol.00029.2004.
|
18. |
Muralidharan-Chari V, Clancy J, Plou C, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles[J]. Curr Biol, 2009, 19(22): 1875-1885. DOI: 10.1016/j.cub.2009.09.059.
|
19. |
Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles[J]. Proc Natl Acad Sci USA, 2015, 112(12): 1433-1442. DOI: 10.1073/pnas.1418401112.
|
20. |
Santos JM, Bárcia RN, Simões SI, et al.The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX®) in the treatment of inflammatory arthritis[J]. J Transl Med, 2013, 17(11): 18. DOI: 10.1186/1479-5876-11-18.
|
21. |
Zhang HC, Liu XB, Huang S, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo[J].Stem Cells Dev, 2012, 21(18): 3289-3297. DOI: 10.1089/scd.2012.0095.
|
22. |
Wu S, Ju GQ, Du T, et al. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo[J/OL]. PLoS One, 2013, 8(4): 61366[2013-04-12]. http://dx.plos.org/10.1371/journal.pone.0061366. DOI: 10.1371/journal.pone.0061366.
|
23. |
Baulch JE, Acharya MM, Allen BD, et al. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain[J]. Proc Natl Acad Sci USA, 2016, 113(17): 4836-4841. DOI: 10.1073/pnas.1521668113.
|