1. |
Witmer MT, Kiss S. Wide-field imaging of the retina[J]. Surv Ophthalmol, 2013, 58(2): 143-154. DOI: 10.1016/j.survophthal.2012.07.003.
|
2. |
Silva PS , El-Rami H , Barham R , et al. Hemorrhage and/or microaneurysm severity and count in ultrawide field images and early treatment diabetic retinopathy study photography[J]. Ophthalmology, 2017, 124(7): 970-976. DOI: 10.1016/j.ophtha.2017.02.012.
|
3. |
Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy[J]. Clin Ophthalmol, 2015, 9: 527-531. DOI: 10.2147/OPTH.S79448.
|
4. |
Talks SJ, Manjunath V, Steel DH, et al. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis[J]. Br J Ophthalmol, 2015, 99(12): 1606-1609. DOI: 10.1136/bjophthalmol-2015-306719.
|
5. |
Manjunath V, Papastavrou V, Steel DH. Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening[J]. Eye (Lond), 2015, 29(3): 416-423. DOI: 10.1038/eye.2014.320.
|
6. |
Rabiolo A, Parravano M, Querques L, et al. Ultra-wide-field fluorescein angiography in diabetic retinpathy: a narrative review[J]. Clin Ophthalmol, 2017, 11: 803-807. DOI: 10.1016/j.ophtha.2015.07.034.
|
7. |
Friberg TR, Gupta A, Yu J, et al. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems[J]. Ophthalmic Surg Lasers Imaging, 2008, 39(4): 304-311. DOI: 10.3928/15428877-20080701-06.
|
8. |
Wessel MM, Aaker GD, Parlitsis G, et al. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy[J]. Retina, 2012, 32(4): 785-791. DOI: 10.1097/IAE.0b013e3182278b64.
|
9. |
Zhang J, Yu Z, Liu L. Multimodality imaging in diagnosing polypoidal choroidal vasculopathy[J]. Optom Vis Sci, 2015, 92(1): 21-26. DOI: 10.1097/OPX.0000000000000440.
|
10. |
Everdell NL, Styles IB, Calcagni A, et al. Multispectral imaging of the ocular fundus using light emitting diode illumination[J]. Rev Sci Instrum, 2010, 81(9): 093706. DOI: 10.1063/1.3478001.
|
11. |
Calcagni A, Gibson JM, Styles IB, et al. Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging[J]. Eye, 2011, 25(12): 1562-1569. DOI: 10.1038/eye.2011.202.
|
12. |
Zimmer C, Kahn D, Clayton R, et al. Innovation in diagnostic retinal imaging: multispectral imaging[J]. Retina Today, 2014, 10: 94-99.
|
13. |
Li S, Huang L, Bai Y, et al. In vivo study of retinal transmission function in different sections of the choroidal structure using multispectral imaging[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3731-3742. DOI: 10.1167/iovs.14-15783.
|
14. |
Li XX. Multispectral fundus imaging for screening and diagnosis[M]. Beijing: Beijing Science & Technology Press, 2014: 32-37.
|
15. |
Xia JT. Evaluation of the application value of LED multi-spectral imaging system in diabetic retinopathy[D]. Lanzhou University, 2016.
|
16. |
Li L, Zhang P, Liu H, et al. Evaluation of multspectral imaging in diagnosing diabetic retinopathy[J/OL]. Retina, 2018, 2018: E1[2018-06-12]. http://dx.doi.org/10.1097/IAE.0000000000002225. DOI: 10.1097/IAE.0000000000002225. [published online ahead of print].
|
17. |
Ahmad MSZ, Carrim ZI. Multicolor scanning laser imaging in diabetic retinopathy[J]. Optom Vis Sci, 2017, 94(11): 1058-1061. DOI: 10.1097/OPX.0000000000001128.
|
18. |
The Diabetic Retinopathy Study Research Group. Indication for photocoagulation treatment of diabetic retinopathy: diabetic retinopathy study report NO.14[J]. Int Ophthalmol Clin, 1987, 27: 239-253. DOI: 10.1097/00004397-198702740-00004.
|
19. |
Muqit MM, Gray JC, Marcelino GR, et al. In vivo laser-tissue interactions and healing responses from 20-vs 100-millisecond pulse pascal photocoagulation burns[J]. Arch Ophthalmol, 2010, 128(4): 448-55. DOI: 10.1001/archophthalmol.2010.36.
|
20. |
Tan AC, Fleckenstein M, Schmitz-Valckenberg S, et al. Clinical application of multicolor imaging technology[J]. Ophthalmologica, 2016, 236(1): 8-18. DOI: 10.1159/000446857.
|
21. |
Gao SS, Liu G, Huang D, Jia Y. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Opt Lett, 2015, 40(10): 2305-2308. DOI: 10.1364/OL.40.002305.
|
22. |
Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
|
23. |
Rispoli M, Lumbroso B, Jia YL, et al. Clinical guide to angio-OCT: non invasive, dyeless OCT angiography[M]. New Delhi: New Delhi Jaypee Brothers Medical Publishers, 2015: 2-3.
|
24. |
Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50. DOI: 10.1001/jamaophthalmol.2014.3616.
|
25. |
Tokayer J, Jia Y, Dhalla AH, et al. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Biomed Opt Express, 2013, 4(10): 1909-1924. DOI: 10.1364/BOE.4.001909.
|
26. |
Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(5): 873-879. DOI: 10.1007/s00417-015-3143-7.
|
27. |
Lee J, Moon BG, Cho AR, et al. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response[J]. Ophthalmology, 2016, 123(11): 2368-2375. DOI: 10.1016/j.ophtha.2016.07.010.
|
28. |
Parravano M, De Geronimo D, Scarinci F, et al. Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection[J]. Am J Ophthalmol, 2017, 179: 90-96. DOI: 10.1016/j.ajo.2017.04.021.
|