1. |
Klein R, Davis MD, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy: a comparison of retinopathy in younger and older onset diabetic persons[J]. Adv Exp Med Biol, 1985, 189: 321-335. DOI: 10.1007/978-1-4757-1850-8.
|
2. |
Matri KE, Chebbi Z, Falfoul Y, et al. Treatment of diabetic macular edema with micropulse laser therapy[J]. Acta Ophthalmol, 2017, 95 Suppl 259: S1. DOI: 10.1111/j.1755-3768.2017.0F031.
|
3. |
Matri LE, Falfoul Y, Chebbi Z, et al. Improvement of diabetic macular edema after micropulse laser therapy[J]. Acta Ophthalmol Scand, 2016, 94 Suppl 256: S1. DOI: 10.1111/j.1755-3768.2016.0535.
|
4. |
Barquet LA. Role of VEGF in diseases of the retina[J]. Arch Soc Esp Oftalmol, 2015, 90 Suppl 1: S3-5. DOI: 10.1016/S0365-6691(15)30002-2.
|
5. |
Ha JM, Jin SY, Lee HS, et al. Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway[J]. Korean J Physiol Pharmacol, 2016, 20(5): 533-538. DOI: 10.4196/kjpp.2016.20.5.533.
|
6. |
Choi YS, Choi HJ, Min JK, et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production[J]. Blood, 2009, 114(14): 3117-3126. DOI: 10.1182/blood-2009-02-203372.
|
7. |
Chamberlain JJ, Johnson EL, Leal S, et al. Cardiovascular disease and risk management: review of the American diabetes association standards of medical care in diabetes 2018[J]. Ann Intern Med, 2018, 168(9): 640-650. DOI: 10.7326/M18-0222.
|
8. |
陈喆, 张士胜, 朱惠敏. 糖尿病视网膜病变的国际临床分类分析[J]. 国际眼科杂志, 2011, 11(8): 1394-1401. DOI: 10.3969/j.issn.1672-5123.2011.08.025.Chen Z, Zhang SS, Zhu HM. Analysis of international clinical diabetic retinopathy disease severity scale[J]. Int Eye Sci, 2011, 11(8): 1394-1401. DOI: 10.3969/j.issn.1672-5123.2011.08.025.
|
9. |
Hwang JU, Sohn J, Moon BG, et al. Assessment of macular function for idiopathic epiretinal membranes classified by spectral-domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3562-3569. DOI: 10.1167/iovs.12-9762.
|
10. |
Ohkoshi K, Tsuiki E, Kitaoka T, et al. Visualization of subthreshold micropulse diode laser photocoagulation by scanning laser ophthalmoscopy in the retro mode[J]. Am J Ophthalmol, 2010, 150(6): 856-862. DOI: 10.1016/j.ajo.2010.06.022.
|
11. |
Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema[J]. Ophthalmology, 2009, 116(1): 73-79. DOI: 10.1016/j.ophtha.2008.09.037.
|
12. |
Lip PL, Belgore F, Blann AD, et al. Plasma VEGF and soluble VEGF receptor FLT-1 in proliferative retinopathy: relationship to endothelial dysfunction and laser treatment[J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2115-2119.
|
13. |
Wilson AS, Hobbs BG, Shen WY, et al. Argon laser photocoagulation-induced modification of gene expression in the retina[J]. Invest Ophthalmol Vis Sci, 2003, 44(4): 1426-1434. DOI: 10.1167/iovs.02-0622.
|
14. |
Luttrull JK, Sramek C, Palanker D, et al. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema[J]. Retina, 2012, 32(2): 375-386. DOI: 10.1097/IAE.0b013e3182206f6c.
|
15. |
Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
|
16. |
Bromberg-White JL, Glazer L, Downer R, et al. Identification of VEGF-independent cytokines in proliferative diabetic retinopathy vitreous[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6472-6480. DOI: 10.1167/iovs.13-12518.
|
17. |
Li J, Hu WC, Song H, et al. Increased vitreous chemerin levels are associated with proliferative diabetic retinopathy[J]. Ophthalmologica, 2016, 236(2): 61-66. DOI: 10.1159/000447752.
|
18. |
Manaviat MR, Rashidi M, Afkhami-Ardekani M, et al. Effect of pan retinal photocoagulation on the serum levels of vascular endothelial growth factor in diabetic patients[J]. Int Ophthalmol, 2011, 31(4): 271-275. DOI: 10.1007/s10792-011-9448-6.
|
19. |
Mohamed TA, Mohamed Sel-D. Effect of pan-retinal laser photocoagulation on plasma VEGF, endothelin-1 and nitric oxide in PDR[J]. Int J Ophthalmol, 2010, 3(1): 19-22. DOI: 10.3980/j.issn.2222-3959.2010.01.05.
|
20. |
Itaya M, Sakurai E, Nozaki M, et al. Upregulation of VEGF in murine retina via monocyte recruitment after retinal scatter laser photocoagulation[J]. Invest Ophthalmol Vis Sci, 2007, 48(12): 5677-5683. DOI: 10.1167/iovs.07-0156.
|
21. |
Konac E, Sonmez K, Bahcelioglu M, et al. Does pattern scan laser (PASCAL) photocoagulation really induce less VEGF expression in murine retina than conventional laser treatment?[J]. Gene, 2014, 549(1): 156-160. DOI: 10.1016/j.gene.2014.07.062.
|
22. |
Riddell JR, Maier P, Sass SN, Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1α[J/OL]. PLoS One, 2012, 7(11): 50394[2012-11-21]. https://doi.org/10.1371/journal.pone.0050394. DOI: 10.1371/journal.pone.0050394.
|
23. |
Flaxel C, Bradle J, Acott T, et al. Retinal pigment epithelium produces matrix metalloproteinases after laser treatment[J]. Retina, 2007, 27(5): 629-634. DOI: 10.1097/01.iae.0000249561.02567.fd.
|
24. |
Lavinsky D, Sramek C, Wang J, et al. Subvisible retinal laser therapy: titration algorithm and tissue response[J]. Retina, 2014, 34(1): 87-97. DOI: 10.1097/IAE.0b013e3182993edc.
|
25. |
Arany PR, Nayak RS, Hallikerimath S, et al. Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing[J]. Wound Repair Regen, 2007, 15(6): 866-874. DOI: 10.1111/j.1524-475X.2007.00306.x.
|
26. |
Szymanska J, Goralczyk K, Klawe JJ, et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion[J]. J Physiol Pharmacol, 2013, 64(3): 387-391.
|
27. |
Mandriota SJ, Menoud PA, Pepper MS. Transforming growth factor beta 1 down-regulates vascular endothelial growth factor receptor 2/flk-1 expression in vascular endothelial cells[J]. J Biol Chem, 1996, 271(19): 11500-11505. DOI: 10.1074/jbc.271.19.11500.
|
28. |
Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines[J]. Immunol Rev, 2008, 223: 20-38. DOI: 10.1111/j.1600-065X.2008.00624.x.
|
29. |
Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J]. Immunity, 2005, 23(5): 479-490. DOI: 10.1016/j.immuni.2005.09.015.
|
30. |
Takeuchi M, Sato T, Tanaka A, et al. Elevated levels of cytokines associated with Th2 and Th17 cells in vitreous fluid of proliferative diabetic retinopathy patients[J/OL]. PLoS One, 2015, 10(9): 137358[2015-09-09]. https://doi.org/10.1371/journal.pone.0137358. DOI: 10.1371/journal.pone.0137358.
|
31. |
Shimura M, Yasuda K, Nakazawa T, et al. Panretinal photocoagulation induces pro- inflammatory cytokines and macular thickening in high-risk proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2009, 247(12): 1617-1624. DOI: 10.1007/s00417-009-1147-x.
|
32. |
Han JW, Choi J, Kim YS, et al. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(2): 341-353. DOI: 10.1007/s00417-017-3883-7.
|
33. |
Chidlow G, Shibeeb O, Plunkett M, et al. Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2319-2332. DOI: 10.1167/iovs.12-11204.
|
34. |
Ito A, Hirano Y, Nozaki M, et al. Short pulse laser induces less inflammatory cytokines in the murine retina after laser photocoagulation[J]. Ophthalmic Res, 2015, 53(2): 65-73. DOI: 10.1159/000366520.
|
35. |
Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J/OL].J Ophthalmol, 2015, 2015: 729792[2015-11-30]. http://dx.doi.org/10.1155/2015/729792. DOI: 10.1155/2015/729792.
|
36. |
Yenari MA, Liu J, Zheng Z, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection[J]. Ann N Y Acad Sci, 2010, 1053(1): 74-83. DOI: 10.1111/j.1749-6632.2005.tb00012.x.
|
37. |
Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability[J]. J Cell Sci, 2008, 121(Pt 13): 2115-2122. DOI: 10.1242/jcs.017897.
|
38. |
Hernández C, Lecube A, Segura RM, et al. Nitric oxide and vascular endothelial growth factor concentrations are increased but not related in vitreous fluid of patients with proliferative diabetic retinopathy[J]. Diabetic Medicine, 2010, 19(8): 655-660. DOI: 10.1046/j.1464-5491.2002.00768.x.
|
39. |
Kulaksizoglu S, Karalezli A. Aqueous humour and serum levels of nitric oxide, malondialdehyde and total antioxidant status in patients with type 2 diabetes with proliferative diabetic retinopathy and nondiabetic senile cataracts[J]. Can J Diabetes, 2016, 40(2): 115-119. DOI: 10.1016/j.jcjd.2015.07.002.
|
40. |
Er H, Doganay S, Turkoz Y, et al. The levels of cytokines and nitric oxide in rabbit vitreous humor after retinal laser photocoagulation[J]. Ophthalmic Surg Lasers, 2000, 31(6): 479-483.
|