1. |
Bresnick G, De Venecia G, Myers F, et al. Retinal ischemia in diabetic retinopathy[J]. Arch Ophthalmol, 1975, 93(12): 1300-1310. DOI: 10.1001/archopht.1975.01010020934002.
|
2. |
中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年[J]. 中华眼科杂志, 2014, 50(11): 851-865. DOI: 10.3760/cam.j.issn.0412-4081.2014.11.014.Chinese Ocular Fundus Diseases Society, Chinese Ophthalmological Society, Chinese Medical Association. Clinical practice guidelines of diabetic retinopathy in China (2014)[J]. Chin J Ophthalmol, 2014, 50(11): 851-865. DOI: 10.3760/cam.j.issn.0412-4081.2014.11.014.
|
3. |
Lee D, Yi H, Bae S, et al. Risk factors for retinal microvascular impairment in type 2 diabetic patients without diabetic retinopathy[J/OL]. PLoS One, 2018, 13(8): 0202103[2018-08-09]. http://dx.plos.org/10.1371/journal.pone.0202103.DOI:10.1371/journal.pone.0202103.
|
4. |
Gozlan J, Ingrand P, Lichtwitz O, et al. Retinal microvascular alterations related to diabetes assessed by optical coherence tomography angiography: a cross-sectional analysis[J]. Medicine (Baltimore), 2017, 96(15): 6427. DOI: 10.1097/MD.000000000000642.
|
5. |
Benitez-Herreros J, Lopez-Guajardo L, Camara-Gonzalez C, et al. Association between macular perfusion and photoreceptor layer status in diabetic macular edema[J]. Retina, 2015, 35(2): 288-293. DOI: 10.1097/IAE.0000000000000299.
|
6. |
Klefter O, Hommel E, Munch I, et al. Retinal characteristics during 1 year of insulin pump therapy in type 1 diabetes: a prospective, controlled, observational study[J]. Acta Ophthalmol, 2016, 94(6): 540-547. DOI: 10.1111/aos.13066.
|
7. |
Bhanushali D, Anegondi N, Gadde S, et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 519-525. DOI: 10.1167/iovs.15-18901.
|
8. |
Conrath J, Giorgi R, Ridings B, et al. Metabolic factors and the foveal avascular zone of the retina in diabetes mellitus[J]. Diabetes Metab, 2005, 31(5): 465-470. DOI: 10.1016/S1262-3636(07)70217-3.
|
9. |
Karst SG, Deak GG, Gerendas BS, et al. Association of changes in macular perfusion with ranibizumab treatment for diabetic macular edema: a subanalysis of the restore (extension) study[J]. JAMA Ophthalmol, 2018, 136(4): 315-321. DOI: 10.1001/jamaophthalmol.2017.6135.
|
10. |
Sasongko MB, Widyaputri F, Sulistyoningrum DC, et al. Estimated resting metabolic rate and body composition measures are strongly associated with diabetic retinopathy in indonesian adults with type 2 diabetes[J]. Diabetes Care, 2018, 41(11): 2377-2384. DOI: 10.2337/dc18-1074.
|
11. |
Early Treatment Diabetic Retinopathy Study Research Group. Classification of diabetic retinopathy from fluorescein angiograms:ETDRS report number 11[J]. Ophthalmology, 1991, 98(5 Suppl): S807-822.
|
12. |
Michaelides M, Fraser-Bell S, Hamilton R, et al. Macular perfusion determined by fundus fluorescein angiography at the 4-month time point in a prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (bolt study): report 1[J]. Retina, 2010, 30(5): 781-786. DOI: 10.1097/IAE.0b013e3181d2f145.
|
13. |
Erol N, Gursoy H, Kimyon S, et al. Vision, retinal thickness, and foveal avascular zone size after intravitreal bevacizumab for diabetic macular edema[J]. Adv Ther, 2012, 29(4): 359-369. DOI: 10.1007/s12325-012-0009-9.
|
14. |
Comyn O, Sivaprasad S, Peto T, et al. A randomized trial to assess functional and structural effects of ranibizumab versus laser in diabetic macular edema (the lucidate study)[J]. Am J Ophthalmol, 2014, 157(5): 960-970. DOI: 10.1016/j.ajo.2014.02.019.
|
15. |
La Mantia A, Kurt RA, Mejor S, et al. Comparing fundus fluorescein angiography and swept-source optical coherence tomography angiography in the evaluation of diabetic macular perfusion[J]. Retina, 2019, 39(5): 926-937. DOI: 10.1097/iae.0000000000002045.
|
16. |
Tan C, Lim L, Chow V, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors[J]. Invest. Ophthalmol Vis Sci, 2016, 57(9): 224-234. DOI: 10.1167/iovs.15-18869.
|
17. |
Bonini-Filho M, Costa RA, Calucci D, et al. Intravitreal bevacizumab for diabetic macular edema associated with severe capillary loss: one-year results of a pilot study[J]. Am J Ophthalmol, 2009, 147(6): 1022-1030. DOI: 10.1016/j.ajo.2009.01.009.
|
18. |
Campochiaro PA, Wykoff CC, Shapiro H, et al. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema[J]. Ophthalmology, 2014, 121(9): 1783-1789. DOI: 10.1016/j.ophtha.2014.03.021.
|
19. |
Ip MS, Domalpally A, Sun J K, et al. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy[J]. Ophthalmology, 2015, 122(2): 367-374. DOI: 10.1016/j.ophtha.2014.08.048.
|
20. |
Reddy RK, Pieramici DJ, Gune S, et al. Efficacy of ranibizumab in eyes with diabetic macular edema and macular nonperfusion in ride and rise[J]. Ophthalmology, 2018, 125(10): 1568-1574. DOI: 10.1016/j.ophtha.2018.04.002.
|
21. |
Nesper PL, Scarinci F, Fawzi AA. Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia[J/OL].PLoS One, 2017, 12(1): 0169926[2017-01-09].https://doi.org/10.1371/journal.pone.0169926.DOI:10.1371/journal.pone.0169926.
|
22. |
Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia[J]. Am J Ophthalmol, 2016, 168: 129-138. DOI: 10.1016/j.ajo.2016.05.002.
|
23. |
Freiberg FJ, Pfau M, Wons J, et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(6): 1051-1058. DOI: 10.1007/s00417-015-3148-2.
|
24. |
Tang F, Ng D, Lam A, et al. Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes[J/OL]. Sci Rep, 2017, 7(1): 2575[2017-05-31]. https://www.nature.com/articles/s41598-017-02767-0.DOI:10.1038/s41598-017-02767-0.
|
25. |
Shiihara H, Terasaki H, Sonoda S, et al. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography[J/OL]. Sci Rep, 2018, 8(1): 10143[2018-07-04]. https://www.nature.com/articles/s41598-018-28530-7.DOI:10.1038/s41598-018-28530-7.
|
26. |
Gadde S, Anegondi N, Bhanushali D, et al. Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 246-252. DOI: 10.1167/iovs.16-19256.
|
27. |
Kim A, Chu Z, Shahidzadeh A, et al. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 362-370. DOI: 10.1167/iovs.15-18904.
|
28. |
Lu Y, Simonett JM, Wang J, et al. Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2212-2221. DOI: 10.1167/iovs.17-23498.
|
29. |
Hwang T, Hagag A, Wang J, et al. Automated quantification of nonperfusion areas in 3 vascular plexuses with optical coherence tomography angiography in eyes of patients with diabetes[J]. JAMA Ophthalmol, 2018, 136(8): 929-936. DOI: 10.1001/jamaophthalmol.2018.2257.
|
30. |
Reif R, Qin J, An L, et al. Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system[J/OL]. Int J Biomed Imaging, 2012, 2012: 509783[2012-06-26].http://dx.doi.org/10.1155/2012/509783. DOI: 10.1155/2012/509783.
|
31. |
Ashraf M, Nesper P, Jampol L, et al. Statistical model of optical coherence tomography angiography parameters that correlate with severity of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4292-4298. DOI: 10.1167/iovs.18-24142.
|
32. |
Samara WA, Shahlaee A, Adam MK, et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity[J]. Ophthalmology, 2017, 124(2): 235-244. DOI: 10.1016/j.ophtha.2016.10.008.
|
33. |
Scarinci F, Jampol L, Linsenmeier R, et al. Association of diabetic macular nonperfusion with outer retinal disruption on optical coherence tomography[J]. JAMA Ophthalmol, 2015, 133(9): 1036-1044. DOI: 10.1001/jamaophthalmol.2015.2183.
|
34. |
Douvali M, Chatziralli IP, Theodossiadis PG, et al. Effect of macular ischemia on intravitreal ranibizumab treatment for diabetic macular edema[J]. Ophthalmologica, 2014, 232(3): 136-143. DOI: 10.1159/000360909.
|
35. |
Bressler SB, Liu D, Glassman AR, et al. Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab[J]. JAMA Ophthalmology, 2017, 135(6): 558-568. DOI: 10.1001/jamaophthalmol.2017.0821.
|
36. |
Chen E, Hsu J, Park CH. Acute visual acuity loss following intravitreal bevacizumab for diabetic macular edema[J]. Ophthalmic Surg Lasers Imaging, 2009, 40(1): 68-70. DOI: 10.3928/15428877-20090101-04.
|
37. |
Goel N, Kumar V, Ghosh B. Ischemic maculopathy following intravitreal bevacizumab for refractory diabetic macular edema[J]. Int Ophthalmol, 2011, 31(1): 39-42. DOI: 10.1007/s10792-010-9390-z.
|
38. |
Battaglia Parodi M, Iacono P, Cascavilla ML, et al. Sequential anterior ischemic optic neuropathy and central retinal artery and vein occlusion after ranibizumab for diabetic macular edema[J]. Eur J Ophthalmol, 2010, 20(6): 1076-1078. DOI: 10.1177/112067211002000609.
|
39. |
Lee S J, Koh HJ. Enlargement of the foveal avascular zone in diabetic retinopathy after adjunctive intravitreal bevacizumab (avastin) with pars plana vitrectomy[J]. J Ocul Pharmacol Ther, 2009, 25(2): 173-174. DOI: 10.1089/jop.2008.0092.
|
40. |
Feucht N, Schonbach EM, Lanzl I, et al. Changes in the foveal microstructure after intravitreal bevacizumab application in patients with retinal vascular disease[J]. Clin Ophthalmol, 2013, 7: 173-178. DOI: 10.2147/opth.s37544.
|
41. |
Chung EJ, Roh MI, Kwon OW, et al. Effects of macular ischemia on the outcome of intravitreal bevacizumab therapy for diabetic macular edema[J]. Retina, 2008, 28(7): 957-963. DOI: 10.1097/IAE.0b013e3181754209.
|
42. |
Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF)[J]. J Cell Mol Med, 2005, 9(4): 777-794. DOI: 10.1111/jcmm.2005.9.issue-4.
|
43. |
Jin KL, Mao X O, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia[J]. Proc Natl Acad Sci USA, 2000, 97(18): 10242-10247. DOI: 10.1073/pnas.97.18.10242.
|
44. |
Manousaridis K, Talks J. Macular ischaemia: a contraindication for anti-vegf treatment in retinal vascular disease[J]. Br J Ophthalmol, 2012, 96(2): 179-184. DOI: 10.1136/bjophthalmol-2011-301087.
|
45. |
Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate[J]. Ophthalmology, 1996, 103(11): 1820-1828. DOI: 10.1016/S0161-6420(96)30420-X.
|
46. |
Kook D, Wolf A, Kreutzer T, et al. Long-term effect of intravitreal bevacizumab (avastin) in patients with chronic diffuse diabetic macular edema[J]. Retina, 2008, 28(8): 1053-1060. DOI: 10.1097/IAE.0b013e318176de48.
|
47. |
Ghasemi Falavarjani K, Iafe NA, Hubschman JP, et al. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 30-34. DOI: 10.1167/iovs.16-20579.
|
48. |
Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer[J]. Br J Cancer, 2007, 96(12): 1788-1795. DOI: 10.1038/sj.bjc.6603813.
|