1. |
Liu H, Bittencourt MG, Wang J, et al. Assessment of central retinal sensitivity employing two types of microperimetry devices[J]. Transl Vis Sci Technol, 2014, 3(5): 3. DOI: 10.1167/tvst.3.5.3.
|
2. |
Acton JH, Greenstein VC. Fundus-driven perimetry (microperimetry) compared to conventional static automated perimetry: similarities, differences, and clinical applications[J]. Can J Ophthalmol, 2013, 48(5): 358-363. DOI: 10.1016/j.jcjo.2013.03.021.
|
3. |
Pfau M, Lindner M, Fleckenstein M, et al. Test-retest reliability of scotopic and mesopic fundus-controlled perimetry using a modified MAIA (macular integrity assessment) in normal eyes[J]. Ophthalmologica, 2017, 237(1): 42-54. DOI: 10.1159/000453079.
|
4. |
Simunovic MP, Xue K, Jolly JK, et al. Structural and functional recovery following limited iatrogenic macular detachment for retinal gene therapy[J]. JAMA Ophthalmol, 2017, 135(3): 234-241. DOI: 10.1001/jamaophthalmol.2016.5630.
|
5. |
Vingolo EM, De Rosa V, Rigoni E. Clinical correlation between retinal sensitivity and foveal thickness in retinitis pigmentosa patients[J]. Eur J Ophthalmol, 2017, 27(3): 352-356. DOI: 10.5301/ejo.5000904.
|
6. |
Liu H, Bittencourt MG, Wang J, et al. Retinal sensitivity is a valuable complementary measurement to visual acuity--a microperimetry study in patients with maculopathies[J]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 253(12): 2137-2142. DOI: 10.1007/s00417-015-2974-6.
|
7. |
Enoch JM. Quantitative layer-by-layer perimetry: an update[J]. Am J Optom Physiol Opt, 1982, 59(12): 952-953. DOI: 10.1097/00006324-198212000-00003.
|
8. |
Timberlake GT, Mainster MA, Webb RH, et al. Retinal localization of scotomata by scanning laser ophthalmoscopy[J]. Invest Ophthalmol Vis Sci, 1982, 22(1): 91-97.
|
9. |
Midena E, Vujosevic S, Cavarzeran F. Normal values for fundus perimetry with the microperimeter MP1[J]. Ophthalmology, 2010, 117(8): 1571-1576. DOI: 10.1016/j.ophtha.2009.12.044.
|
10. |
Seiple W, Rosen RB, Castro-Lima V, et al. The physics and psychophysics of microperimetry[J]. Optom Vis Sci, 2012, 89(8): 1182-1191. DOI: 10.1097/OPX.0b013e3182640c83.
|
11. |
Chen FK, Patel PJ, Xing W, et al. Intrasession repeatability of fixation stability assessment with the Nidek MP-1[J]. Optom Vis Sci, 2011, 88(6): 742-750. DOI: 10.1097/OPX.0b013e3182167641.
|
12. |
Igarashi N, Matsuura M, Hashimoto Y, et al. Assessing visual fields in patients with retinitis pigmentosa using a novel microperimeter with eye tracking: the MP-3[J/OL]. PLoS One, 2016, 11(11): 0166666[2016-11-28].http://dx.plos.org/10.1371/journal.pone.0166666. DOI: 10.1371/journal.pone.0166666.
|
13. |
Cocce KJ, Stinnett SS, Luhmann UFO, et al. Visual function metrics in early and intermediate dry age-related macular degeneration for use as clinical trial endpoints[J]. Am J Ophthalmol, 2018, 189: 127-138. DOI: 10.1016/j.ajo.2018.02.012.
|
14. |
Hanout M, Horan N, Do DV. Introduction to microperimetry and its use in analysis of geographic atrophy in age-related macular degeneration[J]. Curr Opin Ophthalmol, 2015, 26(3): 149-156. DOI: 10.1097/icu.0000000000000153.
|
15. |
Wong EN, Morgan WH, Chen FK. Intersession test-retest variability of 10-2 MAIA microperimetry in fixation-threatening glaucoma[J]. Clin Ophthalmol, 2017, 11: 745-752. DOI: 10.2147/opth.s131371.
|
16. |
Vujosevic S, Smolek MK, Lebow KA, et al. Detection of macular function changes in early (AREDS 2) and intermediate (AREDS 3) age-related macular degeneration[J]. Ophthalmologica, 2011, 225(3): 155-160. DOI: 10.1159/000320340.
|
17. |
Hartmann KI, Bartsch DU, Cheng L, et al. Scanning laser ophthalmoscope imaging stabilized microperimetry in dry age-related macular degeneration[J]. Retina, 2011, 31(7): 1323-1331. DOI: 10.1097/IAE.0b013e31820a6850.
|
18. |
Iwama D, Tsujikawa A, Ojima Y, et al. Relationship between retinal sensitivity and morphologic changes in eyes with confluent soft drusen[J]. Clin Exp Ophthalmol, 2010, 38(5): 483-488. DOI: 10.1111/j.1442-9071.2010.02294.x.
|
19. |
Sulzbacher F, Kiss C, Kaider A, et al. Correlation of SD-OCT features and retinal sensitivity in neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6448-6455. DOI: 10.1167/iovs.11-9162.
|
20. |
Steinberg JS, Sassmannshausen M, Fleckenstein M, et al. Correlation of partial outer retinal thickness with scotopic and mesopic fundus-controlled perimetry in patients with reticular drusen[J]. Am J Ophthalmol, 2016, 168: 52-61. DOI: 10.1016/j.ajo.2016.04.025.
|
21. |
Takahashi A, Ooto S, Yamashiro K, et al. Photoreceptor damage and reduction of retinal sensitivity surrounding geographic atrophy in age-related macular degeneration[J]. Am J Ophthalmol, 2016, 168: 260-268. DOI: 10.1016/j.ajo.2016.06.006.
|
22. |
梁丽娜, 许凯, 王晶莹, 等. 萎缩型年龄相关性黄斑变性形态学及功能学检查技术进展[J]. 眼科新进展, 2017, 37(10): 979-983. DOI: 10.13389/j.cnki.rao.2017.024.Liang LN, Xu K, Wang JY, et al. Advance in morphological measurement and functional test for atrophic age-related macular degeneration[J]. Rec Adv Ophthalmol, 2017, 37(10): 979-983. DOI: 10.13389/j.cnki.rao.2017.024.
|
23. |
Sayegh RG, Kiss CG, Simader C, et al. A systematic correlation of morphology and function using spectral domain optical coherence tomography and microperimetry in patients with geographic atrophy[J]. Br J Ophthalmol, 2014, 98(8): 1050-1055. DOI: 10.1136/bjophthalmol-2014-305195.
|
24. |
Vujosevic S, Frizziero L, Martini F, et al. Single retinal layer changes after subthreshold micropulse yellow laser in diabetic macular edema[J]. Ophthalmic Surg Lasers Imaging Retina, 2018, 49(11): 218-225. DOI: 10.3928/23258160-20181101-22.
|
25. |
Cennamo G, Vecchio EC, Finelli M, et al. Evaluation of ischemic diabetic maculopathy with fourier-domain optical coherence tomography and microperimetry[J]. Can J Ophthalmol, 2015, 50(1): 44-48. DOI: 10.1016/j.jcjo.2014.08.005.
|
26. |
Raman R, Nittala MG, Gella L, et al. Retinal sensitivity over hard exudates in diabetic retinopathy[J]. J Ophthalmic Vis Res, 2015, 10(2): 160-164. DOI: 10.4103/2008-322x.163771.
|
27. |
Soliman W, Hasler P, Sander B, et al. Local retinal sensitivity in relation to specific retinopathy lesions in diabetic macular oedema[J]. Acta Ophthalmol, 2012, 90(3): 248-253. DOI: 10.1111/j.1755-3768.2010.01912.x.
|
28. |
Subash M, Comyn O, Samy A, et al. The effect of multispot laser panretinal photocoagulation on retinal sensitivity and driving eligibility in patients with diabetic retinopathy[J]. JAMA Ophthalmol, 2016, 134(6): 666-672. DOI: 10.1001/jamaophthalmol.2016.0629.
|
29. |
Velaga SB, Nittala MG, Parinitha B, et al. Correlation between retinal sensitivity and cystoid space characteristics in diabetic macular edema[J]. Indian J Ophthalmol, 2016, 64(6): 452-458. DOI: 10.4103/0301-4738.187675.
|
30. |
Battu R, Khanna A, Hegde B, et al. Correlation of structure and function of the macula in patients with retinitis pigmentosa[J]. Eye (Lond), 2015, 29(7): 895-901. DOI: 10.1038/eye.2015.61.
|
31. |
Greenstein VC, Duncker T, Holopigian K, et al. Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa[J]. Retina, 2012, 32(2): 349-357. DOI: 10.1097/IAE.0b013e31821dfc17.
|
32. |
顾鹏, 霍姝佳, 王青, 等. 视网膜色素变性患者黄斑区微视野检测参数与视网膜结构的相关性分析[J]. 第三军医大学学报, 2019, 41(3): 247-251, 258. DOI: 10.16016/j.1000-5404.201808050.Gu P, Huo SJ, Wang Q, et al. Correlation of microperimetric parameters with retinal structure in patients with retinitis pigmentosa[J]. Journal of Third Military Medical University, 2019, 41(3): 247-251, 258. DOI: 10.16016/j.1000-5404.201808050.
|
33. |
Testa F, Melillo P, Di Iorio V, et al. Macular function and morphologic features in juvenile stargardt disease: longitudinal study[J]. Ophthalmology, 2014, 121(12): 2399-2405. DOI: 10.1016/j.ophtha.2014.06.032.
|
34. |
Ervin AM, Strauss RW, Ahmed MI, et al. A workshop on measuring the progression of atrophy secondary to Stargardt disease in the progstar studies: findings and lessons learned[J]. Transl Vis Sci Technol, 2019, 8(2): 16. DOI: 10.1167/tvst.8.2.16.
|
35. |
Bagdonaite-Bejarano L, Hansen RM, Fulton AB. Microperimetry in three inherited retinal disorders[J/OL]. Semin Ophthalmol, 2019: E1-6[2019-05-30]. http://www.tandfonline.com/doi/full/10.1080/08820538.2019.1622025. DOI:10.1080/08820538.2019.1622025.[published online ahead of print].
|
36. |
Reibaldi M, Parravano M, Varano M, et al. Foveal microstructure and functional parameters in lamellar macular hole[J]. Am J Ophthalmol, 2012, 154(6): 974-980. DOI: 10.1016/j.ajo.2012.06.008.
|
37. |
Sun Z, Gan D, Jiang C, et al. Effect of preoperative retinal sensitivity and fixation on long-term prognosis for idiopathic macular holes[J]. Graefe’s Arch Clin Exp Ophthalmol, 2012, 250(11): 1587-1596. DOI: 10.1007/s00417-012-1997-5.
|
38. |
Ozdemir H, Karacorlu M, Senturk F, et al. Retinal sensitivity and fixation changes 1 year after triamcinolone acetonide assisted internal limiting membrane peeling for macular hole surgery--a MP-1 microperimetric study[J]. Acta Ophthalmol, 2010, 88(6): 222-227. DOI: 10.1111/j.1755-3768.2010.01898.x.
|
39. |
Baba T, Hagiwara A, Sato E, et al. Comparison of vitrectomy with brilliant blue G or indocyanine green on retinal microstructure and function of eyes with macular hole[J]. Ophthalmology, 2012, 119(12): 2609-2615. DOI: 10.1016/j.ophtha.2012.06.048.
|
40. |
Ueda-Consolvo T, Otsuka M, Hayashi Y, et al. Microperimetric biofeedback training improved visual acuity after successful macular hole surgery[J/OL]. J Ophthalmol, 2015, 2015: 572942[2015-12-13]. https://dx.doi.org/10.1155/2015/572942. DOI: 10.1155/2015/572942.
|
41. |
Borowicz D, Nowomiejska K, Nowakowska D, et al. Functional and morphological results of treatment of macula-on and macula-off rhegmatogenous retinal detachment with pars plana vitrectomy and sulfur hexafluoride gas tamponade[J]. BMC Ophthalmol, 2019, 19(1): 118. DOI: 10.1186/s12886-019-1120-3.
|
42. |
Eissa M, Abdelhakim M, Macky TA, et al. Functional and structural outcomes of ILM peeling in uncomplicated macula-off RRD using microperimetry & en-face OCT[J]. Graefe’s Arch Clin Exp Ophthalmol, 2018, 256(2): 249-257. DOI: 10.1007/s00417-017-3875-7.
|
43. |
Gerendas BS, Kroisamer JS, Buehl W, et al. Correlation between morphological characteristics in spectral-domain-optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy[J]. Acta Ophthalmol, 2018, 96(7): 776-782. DOI: 10.1111/aos.13665.
|
44. |
周立军, 赖坤贝, 黄创新, 等. 微视野检测在中心性浆液性脉络膜视网膜病变疗效评价中的应用[J]. 中国激光医学杂志, 2018, 27(6): 365-369. DOI: 10.13480/j.issn.1003-9430.2018.0365.Zhou LJ, Nai KB, Huang CX, et al. Application of microperimetry in evaluating therapeutic efficacy for central serous chorioretinopathy[J]. Chin J Laser Med Surg, 2018, 27(6): 365-369. DOI: 10.13480/j.issn.1003-9430.2018.0365.
|
45. |
van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial[J]. Ophthalmology, 2018, 125(10): 1547-1555. DOI: 10.1016/j.ophtha.2018.04.021.
|
46. |
Muslubas IS, Ersoz MG, Hocaoglu M, et al. Morphological and functional changes immediately after half-time photodynamic therapy in patients with central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2018, 49(12): 932-940. DOI: 10.3928/23258160-20181203-05.
|
47. |
Johnson DA. The use of the scanning laser ophthalmoscope in the evaluation of amblyopia (an American Ophthalmological Society thesis)[J]. Trans Am Ophthalmol Soc, 2006, 104: 414-436.
|
48. |
Dickmann A, Petroni S, Perrotta V, et al. A morpho-functional study of amblyopic eyes with the use of optical coherence tomography and microperimetry[J]. J Aapos, 2011, 15(4): 338-341. DOI: 10.1016/j.jaapos.2011.03.019.
|
49. |
Subramanian V, Jost RM, Birch EE. A quantitative study of fixation stability in amblyopia[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 1998-2003. DOI: 10.1167/iovs.12-11054.
|
50. |
Vingolo EM, Napolitano G, Fragiotta S. Microperimetric biofeedback training: fundamentals, strategies and perspectives[J]. Front Biosci (Schol Ed), 2018, 10: 48-64. DOI: 10.2741/s500.
|
51. |
Molina-Martin A, Pinero DP, Perez-Cambrodi RJ. Fixation pattern analysis with microperimetry in nystagmus patients[J]. Can J Ophthalmol, 2015, 50(6): 413-421. DOI: 10.1016/j.jcjo.2015.07.012.
|
52. |
Molina A, Perez-Cambrodi RJ, Ruiz-Fortes P, et al. Utility of microperimetry in nystagmus: a case report[J]. Can J Ophthalmol, 2013, 48(5): 103-105. DOI: 10.1016/j.jcjo.2013.07.017.
|
53. |
Westcott MC, McNaught AI, Crabb DP, et al. High spatial resolution automated perimetry in glaucoma[J]. Br J Ophthalmol, 1997, 81(6): 452-459. DOI: 10.1136/bjo.81.6.452.
|
54. |
Orzalesi N, Miglior S, Lonati C, et al. Microperimetry of localized retinal nerve fiber layer defects[J]. Vision Res, 1998, 38(5): 763-771. DOI: 10.1016/S0042-6989(97)00171-5.
|
55. |
Ratra V, Ratra D, Gupta M, et al. Comparison between Humphrey Field Analyzer and Micro Perimeter 1 in normal and glaucoma subjects[J]. Oman J Ophthalmol, 2012, 5(2): 97-102. DOI: 10.4103/0974-620x.99372.
|
56. |
Huang P, Shi Y, Wang X, et al. Use of microperimetry to compare macular light sensitivity in eyes with open-angle and angle-closure glaucoma[J]. Jpn J Ophthalmol, 2012, 56(2): 138-144. DOI: 10.1007/s10384-011-0111-6.
|
57. |
Rao HL, Januwada M, Hussain RS, et al. Comparing the structure-function relationship at the macula with standard automated perimetry and microperimetry[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8063-8068. DOI: 10.1167/iovs.15-17922.
|
58. |
Sato S, Hirooka K, Baba T, et al. Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HD-OCT and macular visual field sensitivity measured with microperimetry[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 3046-3051. DOI: 10.1167/iovs.12-11173.
|