1. |
Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: a potential novel class of cancer biomarkers[J/OL]. Front Genet, 2015, 6: 145[2015-04-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407501/. DOI:10.3389/fgene.2015.00145.
|
2. |
Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 470-480. DOI: 10.1167/iovs.16-20569.
|
3. |
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future[J]. Genetics, 2013, 193(3): 651-669. DOI: 10.1534/genetics.112.146704.
|
4. |
Heo JB, Lee YS, Sung S. Epigenetic regulation by long noncoding RNAs in plants[J]. Chromosome Res, 2013, 21(6-7): 685-693. DOI: 10.1007/s10577-013-9392-6.
|
5. |
Pasmant E, Laurendeau I, Héron D, et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF[J]. Cancer Res, 2007, 67(8): 3963-3969. DOI: 10.1158/0008-5472.CAN-06-2004.
|
6. |
Cunnington MS, Santibanez KM, Mayosi BM, et al. Chromosome 9p21 SNPs Associated with multiple disease phenotypes correlate with ANRIL expression[J/OL]. PLoS Genet, 2010, 6(4): 1000899[2010-04-08]. https://doi.org/10.1371/journal.pgen.1000899. DOI:10.1371/journal.pgen.1000899.
|
7. |
Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks[J/OL]. PLoS Genet, 2013, 9(7): 1003588[2013-07-04].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701717/. DOI:10.1371/journal.pgen.1003588.
|
8. |
Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J/OL]. PLoS Genet, 2010, 6(12): 1001233[2010-12-02].https://doi.org/10.1371/journal.pgen.1001233. DOI:10.1371/journal.pgen.1001233.
|
9. |
Zhang EB, Kong R, Yin DD, et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a[J]. Oncotarget, 2014, 5(8): 2276-2292. DOI: 10.18632/oncotarget.1902.
|
10. |
Pasmant E, Sabbagh A, Vidaud M, et al. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS[J]. FASEB J, 2011, 25(2): 444-448. DOI: 10.1096/fj.10-172452.
|
11. |
Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA[J]. Nature, 2008, 451(7175): 202-206. DOI: 10.1038/nature06468.
|
12. |
Aguilo F, Di Cecilia S, Walsh MJ. Long non-coding RNA ANRIL and polycomb in human cancers and cardiovascular disease[J]. Curr Top Microbiol Immunol, 2016, 394: 29-39. DOI: 10.1007/82-2015-455.
|
13. |
Pasquale LR, Loomis SJ, Kang JH, et al. CDKN2B-AS1 genotype-glaucoma feature correlations in primary open-angle glaucoma patients from the United States[J]. Am J Ophthalmol, 2013, 155(2): 342-353. DOI: 10.1016/j.ajo.2012.07.023.
|
14. |
Guil S, Soler M, Portela A, et al. Intronic RNAs mediate EZH2 regulation of epigenetic targets[J]. Nat Struct Mol Biol, 2012, 19(7): 664-670. DOI: 10.1038/nsmb.2315.
|
15. |
Kong Y, Sharma RB, Nwosu BU, et al. Islet biology, the CDKN2A/B locus and type 2 diabetes risk[J]. Diabetologia, 2016, 59(8): 1579-1593. DOI: 10.1007/s00125-016-3967-7.
|
16. |
Pullen TJ, Rutter GA. Could lncRNAs contribute to β-cell identity and its loss in type 2 diabetes?[J]. Biochem Soc Trans, 2013, 41(3): 797-801. DOI: 10.1042/BST20120355.
|
17. |
Yan B, Tao ZF, Li XM, et al. Aberrant expression of long noncoding RNAs in early diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 941-951. DOI: 10.1167/iovs.13-13221.
|
18. |
Debasish P, Toffa D, Gitanjali T. Pharmacognostic evaluation of curcumin on diabetic retinopathy in alloxan-induced diabetes through NF-κB and Brn3a related mechanism[J]. Phcog J, 2018, 10(2): 324-332. DOI: 10.5530/pj.2018.2.56.
|
19. |
Choudhuri S, Chowdhury IH, Das S, et al. Role of NF-κB activation and VEGF gene polymorphisms in VEGF up regulation in non-proliferative and proliferative diabetic retinopathy[J]. Mol Cell Biochem, 2015, 405(1-2): 265-279. DOI: 10.1007/s11010-015-2417-z.
|
20. |
Zhang B, Wang D, Ji TF, et al. Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model[J/OL].Oncotarget, 2017, 8(10): 17347[2017-03-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370045/. DOI:10.18632/oncotarget.14468.
|
21. |
Zhou X, Han X, Wittfeldt A, et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway[J]. RNA Biol, 2015, 13(1): 98-108. DOI: 10.1080/15476286.2015.1122164.
|
22. |
Wei JC, Shi YL, Wang Q. LncRNA ANRIL knockdown ameliorates retinopathy in diabetic rats by inhibiting the NF-kappaB pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(18): 7732-7739. DOI: 10.26355/eurrev-201909-18982.
|
23. |
Mishra M, Kowluru RA. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(7): 1761-1769. DOI: 10.1016/j.bbadis.2017.04.024.
|
24. |
Hammer SS, Beli E, Kady N, et al. The mechanism of diabetic retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and liver X receptor[J]. E Bio Medicine, 2017, 22: 181-190. DOI: 10.1016/j.ebiom.2017.07.008.
|
25. |
Xu R, Mao Y, Chen K, et al. The long noncoding RNA ANRIL acts as an oncogene and contributes to paclitaxel resistance of lung adenocarcinoma A549 cells[J]. Oncotarget, 2017, 8(24): 39177-39184. DOI: 10.18632/oncotarget.16640.
|
26. |
Zhu H, Li X, Song Y, et al. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway[J]. Biochem Biophys Res Commun, 2015, 467(2): 223-228. DOI: 10.1016/j.bbrc.2015.10.002.
|
27. |
Ruiz MA, Feng B, Chakrabarti S. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy[J/OL].PLoS One 2015, 10(4): 123987[2015-04-17]. https://doi.org/10.1371/journal.pone.0123987. DOI:10.1371/journal.pone.0123987.
|
28. |
Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349. DOI: 10.1038/nature09784.
|
29. |
Yoo KH, Hennighausen L. EZH2 methyltransferase and H3K27 methylation in breast cancer[J]. Int J Biol Sci, 2012, 8(1): 59-65. DOI: 10.7150/ijbs.8.59.
|
30. |
Chase A, Cross NC. Aberrations of EZH2 in cancer[J]. Clin Cancer Res, 2011, 17(9): 2613-2618. DOI: 10.1158/1078-0432.CCR-10-2156.
|
31. |
Yap KL, Li S, Munoz-Cabello AM, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a[J]. Mol Cell, 2010, 38(5): 662-674. DOI: 10.1016/j.molcel.2010.03.021.
|
32. |
Thomas AA, Feng B, Chakrabarti S. ANRIL regulates production of extracellular matrix proteins and vasoactive factors in diabetic complications[J]. Am J Physiol Endocrinol Metab, 2018, 314(3): 191-200. DOI: 10.1152/ajpendo.00268.2017.
|
33. |
Yang ZZ, Zhang Y, Chen X, et al. Total synthesis and evaluation of new B-homo palmatine and berberine derivatives as p300 histone acetyltransferase inhibitors[J]. Eur J Org Chem, 2018, 2018(8): 1041-1052. DOI: 10.1002/ejoc.201701693.
|
34. |
Meseure D, Vacher S, Alsibai KD, et al. Expression of ANRIL-Polycomb complexes- CDKN2A/B/ARF genes in breast tumors: identification of a two-gene (EZH2/CBX7) signature with independent prognostic value[J]. Mol Cancer Res, 2016, 14(7): 623-633. DOI: 10.1158/1541-7786.MCR-15-0418.
|
35. |
Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J]. J Biol Chem, 2008, 283(22): 14910-14914. DOI: 10.1074/jbc.C800074200.
|
36. |
Xi Y, Chang H. MIR200B (microRNA 200b)[J]. Altas Genet Cytogenet Oncol Haematol, 2016, 20(5): 273-274. DOI: 10.4267/2042/62776.
|
37. |
Peng F, Jiang J, Yu Y, et al. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis[J]. Br J Cancer, 2013, 109(12): 3092-3104. DOI: 10.1038/bjc.2013.655.
|
38. |
Mcarthur K, Feng B, Wu Y, et al. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy[J]. Diabetes, 2011, 60(4): 1314-1323. DOI: 10.2337/db10-1557.
|
39. |
Li EH, Huang QZ, Li GC, et al. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene[J/OL]. Biosci Rep, 2017, 37(2): 20160572[2017-04-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484021/. DOI:10.1042/BSR20160572.
|