1. |
Benjamin E J, Blaha M J, Chiuve S E, et al. Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation, 2017, 135(10): e146-e603.
|
2. |
Braunwald E. The war against heart failure: the Lancet lecture. Lancet, 2015, 385(9970): 812-824.
|
3. |
Kirklin J K, Naftel D C, Pagani F D, et al. Seventh INTERMACS annual report: 15, 000 patients and counting. J Heart Lung Transplant, 2015, 34(12): 1495-1504.
|
4. |
Patel C B, Cowger J A, Zuckermann A. A contemporary review of mechanical circulatory support. The Journal of Heart and Lung Transplantation, 2014, 33(7): 667-674.
|
5. |
Husain S, Sole A, Alexander B D, et al. The 2015 international society for heart and lung transplantation guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: executive summary. Journal of Heart & Lung Transplantation the Official Publication of the International Society for Heart Transplantation, 2016, 35(3): 273-277.
|
6. |
Schüle C Y, Thamsen B, Blümel B, et al. Experimental and numerical investigation of an axial rotary blood pump. Artif Organs, 2016, 40(11): 192-202.
|
7. |
Thamsen B, Blümel B, Schaller J, et al. Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artif Organs, 2015, 39(8): 651-659.
|
8. |
云忠, 石芬, 向闯, 等. 混流血泵血液压差损伤机理分析及仿真. 机械设计与研究, 2010, 26(3): 29-32, 48.
|
9. |
Carrier M, Farinas M I, Garon A. Hemodynamic characteristics of a mixed flow pump prototype: progress report of in vitro and acute animal experiments. ASAIO Journal, 2006, 52(4): 373-377.
|
10. |
Shu F, Tian R, Vandenberghe S, et al. Experimental study of micro-scale taylor vortices within a co-axial mixed-flow blood pump. Artif Organs, 2016, 40(11): 1071-1078.
|
11. |
Kuleshov A P, Itkin G P. Channel rotor calculation for a centrifugal blood pump. Biomed Eng (NY), 2019, 52(5): 311-315.
|
12. |
Drešar P, Rutten M, Gregoric I D, et al. A numerical simulation of heartassist5 blood pump using an advanced turbulence model. ASAIO Journal, 2018, 64(5): 673-679.
|
13. |
Liu G M, Jin D H, Zhou J Y, et al. Numerical investigation of the influence of blade radial gap flow on axial blood pump performance. ASAIO Journal, 2019, 65(1): 59-69.
|
14. |
Berg N, Fuchs L, Wittberg L P, et al. Flow characteristics and coherent structures in a centrifugal blood pump. Flow Turbulence and Combustion, 2019, 102(2): 469-483.
|
15. |
Liu Guangmao, Zhou Jianye, Sun Hansong, et al. Effects of cone-shaped bend inlet cannulas of an axial blood pump on thrombus formation: an experiment and simulation study. Medical Science Monitor, 2017, 23: 1655-1661.
|
16. |
Malinauskas R A, Hariharan P, Day S W, et al. FDA benchmark medical device flow models for cfd validation. ASAIO Journal, 2017, 63(2): 150-160.
|
17. |
张岩, 薛嵩, 桂幸民, 等. 运用三维数值模拟对人工心脏轴流血泵的设计和改进. 中国生物医学工程学报, 2007, 26(1): 35-41.
|
18. |
Thamsen B, Plamondon M, Granegger M, et al. Investigation of the axial gap clearance in a hydrodynamic-passive magnetically levitated rotary blood pump using X-ray radiography. Artif Organs, 2018, 42(5): 510-515.
|
19. |
Bludszuweit C. Model for a general mechanical blood damage prediction. Artif Organs, 1995, 19(7): 583-589.
|
20. |
寿宸, 郭勇君, 苏磊, 等. 基于快速溶血预估模型的离心血泵叶轮特性数值分析. 生物医学工程学杂志, 2014(6): 1260-1264.
|
21. |
Torner B, Konnigk L, Wurm F H. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device. Int J Artif Organs, 2019, 42(12): 735-747.
|
22. |
Taskin M E, Fraser K H, Zhang T, et al. Evaluation of eulerian and lagrangian models for hemolysis estimation. ASAIO Journal, 2012, 58(4): 363-372.
|
23. |
张金丽, 程云章, 郑淇文. 连续型血泵溶血性能评价方法分析. 中国医学物理学杂志, 2018(9): 1087-1093.
|
24. |
Song X, Throckmorton A L, Wood H G, et al. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics. J Fluids Eng, 2004, 126(3): 410-418.
|
25. |
柳光茂, 周建业, 胡盛寿, 等. 左心辅助装置流入管道不同头部结构的数值模拟. 生物医学工程学杂志, 2013, 30(1): 141-148.
|