1. |
聂生东,孙希文,陈兆学.基于CT图像的肺结节计算机辅助检测技术的研究进展[J].中国医学物理学杂志,2009,26(2):1075-1079.
|
2. |
LEE S L A, KOUZANI A Z, HU E J. Automated detection of lung nodules in computed tomography images: a review[J]. Mach Vision Appl, 2012, 23(1): 151-163.
|
3. |
DICIOTTI S, PICOZZI G, FALCHINI M, et al. 3D segmentation algorithm of small lung nodules in spiral CT images[J]. Biomedical, 2008, 12(1): 7-19.
|
4. |
DE HOOP B, DE BOO D W, GIETEMA H A, et al. Computer-aided detection of lung cancer on chest radiographs: effect on observer performance[J]. Radiology, 2010, 257(2): 532-540.
|
5. |
GOMATHI M. Automated CAD for lung nodule detection using CT scans[C]//International Conference on Data Storage and Data Engineering, Bangalore: 2010: 150-153.
|
6. |
曹蕾.肺结节图像的分析与识别[D].广州:南方医科大学,2009:1-90.
|
7. |
Lung Imaging Database Consortium (LIDC) [OL]. (2011-01-01)[2013-03-04].http://imaging.cancer.gov/programsandresources/InformationSystems/LIDC.
|
8. |
YANAGAWA M, HONDA O, KIKUYAMA A, et al. Pulmonary nodules: effect of adaptive statistical iterative Reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans[J]. Eur J Radiol, 2012, 81(10): 2877-2886.
|
9. |
ZHANG G M, XIN J, WU J, et al. CT image denoising using wavelet transform and dynamic fuzzy logic[C]//International Workshop on Intelligent Systems and Applications. Wuhan:2009: 1-4.
|
10. |
HUA P F, SONG Q, SONKA M L, et al. Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm[C]//International Symposium on Biomedical Imaging:From Nano to Macro. Chicago: 2011:2072-2075.
|
11. |
张林,何中市,张杰慧.快速边界行进算法:一种CT图像肺实质自动分割策略[J].计算机应用研究,2011,28(9):3556-3558.
|
12. |
EL-BAZL A, NITZKEN M, VANBOGAERTL E, et al. A novel shape-based diagnostic approach for early diagnosis of lung nodules[C]//International Symposium on Biomedical Imaging:From Nano to Macro. Chicago: 2011:137-140.
|
13. |
AKARAPHAN J, NAGUL C, RAJALIDA L. Three dimensional lung nodule segmentation and estimation using thresholding on local thickness[C]//International Conference on Signal Processing Communication and Computing. Hong Kong: 2012: 593-596.
|
14. |
TAKAHIRO M, TAKUMI T, SHINYA M, et al. Classification of lung nodules on temporal subtraction image based on statistical features and improvement of segmentation accuracy[J]. Automation and Systems, 2012, 1(12): 1814-1817.
|
15. |
SOUSA J R, SILVA A C, DE PAIVA A C, et al. Methodology for automatic detection of lung nodules in computerized tomography images[J]. Comput Methods Programs Biomed, 2010, 98(1): 1-14.
|
16. |
郭浩.基于MIP的CT二维检测[D].西安:西安科技大学,2010.
|
17. |
LI Y, LIU J, MENG L J. Suspected pulmonary nodule detection algorithm based on morphology and gray entropy[J]. Comput Sci Aut Eng, 2011, 1(4): 103-108.
|
18. |
WOOK J C, TAE S C. Computer-aided detection of pulmonary nodules using genetic programming[C]//17th International Conference on Image Processing. Hong Kong: 2010: 4353-4356.
|
19. |
韩妍妍,冯筠,崔鑫,等.动态多分类器集成在肺结节辅助检测中的应用[J].计算机工程与应用,2012,48(2):218-221.
|
20. |
LIU Y, YANG J Z, ZHAO D Z, et al. A method of pulmonary nodule detection utilizing multiple support vector[C]//International Conference on Computer Application and System Modeling Machines. Taiyuan: 2010:118-121.
|
21. |
曹蕾,黎维娟,冯前进.基于LDA和SVM的肺结节CT图像自动检测与诊断[J].南方医科大学学报,2011,31(2):324-328.
|
22. |
SARAH T N, HAMID A. Automated detection and classification of pulmonary nodules in 3D thoracic CT images[C]//International Conference on Systems Man and Cybernetics. Istanbul: 2010:3774-3779.
|
23. |
AMAL F, ASEM A, JAMES G, et al. Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose ct scans of the chest[C]//International Symposium on Biomedical Imaging:From Nano to Macro. Chicago: 2011:169-172.
|
24. |
王倩,龚建平,宋恩民,等.CT图像中肺结节毛刺特征的计算机量化方法[J].华中科技大学学报:自然科学版,2011,39(7):26-29.
|
25. |
WEI C S, YANG H Y, CHENG H C. Computer aided diagnosis for pulmonary nodule on low-dose computed tomography(LDCT)using density features[C]//8th International Conference on Computer Graphics Imaging and Visualization. Singapore: 2011:166-169.
|
26. |
GUAN Y D, WANG Y, ZOU Y. Computer-aided detection for pulmonary nodules base on the morphological and spatial features[C]//International Conference on Biomedical Engineering and Computer Science. Wuhan: 2010:1-4.
|
27. |
WANG C M, GUAN Y H, ZUO C T, et al. Value of the texture feature for solitary ulmonary nodules and mass lesions based on PET/CT[C]//4th International Conference on Bioinformatics and Biomedical Engineering. Chengdu: 2010:1-8.
|
28. |
CHADDAD A, TANOUGAST C, DANDACHE A, et al. Extraction of haralick features from segmented texture multispectral bio-images for detection of colon cancer cells[C]//First International Conference on Informatics and Computational Intelligence. Bandung: 2011:55-59.
|
29. |
TEMESGUEN M, RUSSELL C, STEVEN K R. A new computationally efficient CAD system for pulmonary nodule detectioin CT imagery[J]. Med Image Anal, 2010, 14(3): 390-406.
|
30. |
廉策.肺CAD算法评估辅助工具的设计与实现[J].机械设计与制造,2010,1(9):266-268.
|