1. |
KLIBANSKI A, CAMPBELL L A, BASSFORD T. Osteoporosis prevention, diagnosis, and therapy [J]. JAMA, 2001, 285(6): 785-795.
|
2. |
HUGHES B D. Calcium supplementation and bone loss: a review of controlled clinical trials[J]. Am J Clin Nutr, 1991, 54(Suppl 1): S274-S280.
|
3. |
ENSRUD K E, PALERMO L, BLACK D M, et al. Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures[J]. J Bone Miner Res, 1995, 10(11): 1778-1787.
|
4. |
HANNAN M T, FELSON D T, ANDERSON J J. Bone mineral density in elderly men and women: results from the Framingham osteoporosis study[J]. J Bone Miner Res, 1992, 7(5): 547-553.
|
5. |
SEEMAN E, TSALAMANDRIS C, BASS S, et al. Present and future of osteoporosis therapy[J]. Bone, 1995, 17(Suppl 2): S23-S29.
|
6. |
HIRANO T, TURNER C H, FORWOOD M R, et al. Does suppression of bone turnover impair mechanical properties by allowing microdamage accumulation?[J]. Bone, 2000, 27(1): 13-20.
|
7. |
PANKOKE S, HOFMANN J, WÖLFEL H P. Determination of vibration-related spinal loads by numerical simulation[J]. Clin Biomech (Bristol, Avon), 2001, 16(Suppl 1): S45-S56.
|
8. |
VERSCHUEREN S M, ROELANTS M, DELECLUSE C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study[J]. J Bone Miner Res, 2004, 19(3): 352-359.
|
9. |
RUBIN C, TURNER A S, BAIN S, et al. Anabolism. low mechanical signals strengthen long bones[J]. Nature, 2001, 412(6847): 603-604.
|
10. |
CARDINALE M, RITTWEGER J. Vibration exercise makes your muscles and bones stronger: fact or fiction?[J]. J Br Menopause Soc, 2006, 12(1): 12-18.
|
11. |
RUBIN C, TURNER A S, MÜLLER R, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention[J]. J Bone Miner Res, 2002, 17(2): 349-357.
|
12. |
RUBIN C, TURNER A S, MALLINCKRODT C, et al. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone[J]. Bone, 2002, 30(3): 445-452.
|
13. |
GILSANZ V, WREN T A, SANCHEZ M, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD[J]. J Bone Miner Res, 2006, 21(9): 1464-1474.
|
14. |
RUAN X Y, JIN F Y, LIU Y L, et al. Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis[J]. Chin Med J (Engl), 2008, 121(13): 1155-1158.
|
15. |
FROST H M. A 2003 update of bone physiology and Wolff's Law for clinicians[J]. Angle Orthod, 2004, 74(1): 3-15.
|
16. |
ROBLING A G, CASTILLO A B, TURNER C H. Biomechanical and molecular regulation of bone remodeling[J]. Annu Rev Biomed Eng, 2006, 8: 455-498.
|
17. |
PITUKCHEEWANONT P, SAFANI D. Extremely low-level, short-term mechanical stimulation increases cancellous and cortical bone density and muscle mass of children with low bone density: a pilot study[J]. Endocrinologist, 2006, 16(3): 128-132.
|
18. |
项嫔, 王丽珍, 都承斐, 等.全腰椎有限元模态分析[J].医用生物力学, 2014, 29(1):78-84.
|
19. |
GUO L X, TEO E C, LEE K K, et al. Vibration characteristics of the human spine under axial cyclic loads: effect of frequency and damping[J]. Spine (Phila Pa 1976), 2005, 30(6): 631-637.
|
20. |
SHARMA M, LANGRANA N A, RODRIGUEZ J. Role of ligaments and facets in lumbar spinal stability[J]. Spine (Phila Pa 1976), 1995, 20(8): 887-900.
|
21. |
KURUTZ M, OROSZVÁRY L. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase[J]. J Biomech, 2010, 43(3): 433-441.
|
22. |
李志香, 马超, 张春林.振动对骨与关节病的影响[J].中国组织工程研究与临床康复, 2010, 14(39):7273-7276.
|
23. |
XIE L, JACOBSON J M, CHOI E S, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton[J]. Bone, 2006, 39(5): 1059-1066.
|
24. |
RUBIN C, POPE M, FRITTON J C, et al. Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis[J]. Spine (Phila Pa 1976), 2003, 28(23): 2621-2627.
|
25. |
DE OLIVEIRA C G, SIMPSON D M, NADAL J. Lumbar back muscle activity of helicopter pilots and whole-body vibration[J]. J Biomech, 2001, 34(10): 1309-1315.
|
26. |
刘洋, 周军, 叶超群.全身振动防治绝经后骨质疏松的研究进展[J].中国康复医学杂志, 2008, 23(2):190-192.
|
27. |
JORDAN J. Good vibrations and strong bones?[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288(3): R555-R556.
|
28. |
RITTWEGER J, JUST K, KAUTZSCH K, et al. Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: a randomized controlled trial[J]. Spine (Phila Pa 1976), 2002, 27(17): 1829-1834.
|
29. |
RUBIN C, XU G, JUDEX S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli[J]. FASEB J, 2001, 15(12): 2225-2229.
|
30. |
李志香, 张春林, 谈诚.30Hz全身振动对骨质疏松的影响[J].航天医学与医学工程, 2007, 20(2):116-119.
|
31. |
李志香, 马超, 张春林.振动对骨重建影响的三维有限元分析[J].北京生物医学工程, 2009, 28(6):565-568.
|
32. |
GUO L X, TEO E C. Prediction of the modal characteristics of the human spine at resonant frequency using finite element models[J]. Proc Inst Mech Eng H, 2005, 219(4): 277-284.
|
33. |
郭立新, 陈威, 刘学勇.基于有限元模型的人体损伤脊柱的动态特性分析[J].东北大学学报:自然科学版, 2005, 26(9):836-839.
|
34. |
BAZRGARI B, SHIRAZI-ADL A, KASRA M. Seated whole body vibrations with high-magnitude accelerations——relative roles of inertia and muscle forces[J]. J Biomech, 2008, 41(12): 2639-2646.
|
35. |
宫赫, 张明, 朱东, 等.62岁和69岁椎体松质骨表观弹性模量与骨量的关系[J].清华大学学报:自然科学版, 2007, 47(8):1393-1396.
|