1. |
JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2):69-90.
|
2. |
方琼英, 吴琼, 张秀玲, 等.乳腺癌的流行现状分析[J].中国社会医学杂志, 2012, 29(5):333-335.
|
3. |
LEE C H, KUO W H, LIN C C, et al. MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer[J]. Int J Mol Sci, 2013, 14(6):11560-11606.
|
4. |
SAKURAI F, KATAYAMA K, MIZUGUCHI H. MicroRNA-regulated transgene expression systems for gene therapy and virotherapy[J]. Front Biosci (Landmark Ed), 2011, 16:2389-2401.
|
5. |
WANG F, SUN G P, ZOU Y F, et al. MicroRNAs as promising biomarkers for gastric cancer[J]. Cancer Biomark, 2012, 11(6):259-267.
|
6. |
BOERI M, PASTORINO U, SOZZI G, et al. Role of microRNAs in lung cancer:microRNA signatures in cancer prognosis[J]. Cancer J, 2012, 18(3):268-274.
|
7. |
NAVARRO A, CLOT G, PRIETO M, et al. MicroRNA expression profiles identify subtypes of mantle cell lymphoma with different clinicobiological characteristics[J]. Clin Cancer Res, 2013, 19(12):3121-3129.
|
8. |
GALASSO M, SANDHU S K, VOLINIA S. MicroRNA expression signatures in solid malignancies[J]. Cancer J, 2012, 18(3):238-243.
|
9. |
FARAZI T A, HORLINGS H M, TEN HOEVE J J, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing[J]. Cancer Res, 2011, 71(13):4443-4453.
|
10. |
YAN L X, WU Q N, ZHANG Y, et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth[J]. Breast Cancer Res, 2011, 13(1):R2.
|
11. |
IYEVLEVA A G, KULIGINA E S H, MITIUSHKINA N V, et al. High level of miR-21, miR-10b, and miR-31 expression in bilateral vs. unilateral breast carcinomas[J]. Breast Cancer Res Treat, 2012, 131(3):1049-1059.
|
12. |
LIAO S J, ZHOU Y H, YUAN Y, et al. Triggering of Toll-like receptor 4 on metastatic breast cancer cells promotesαvβ3-mediated adhesion and invasive migration[J]. Breast Cancer Res Treat, 2012, 133(3):853-863.
|
13. |
TILGHMAN S L, BRATTON M R, SEGAR H C, et al. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells[J]. PLoS One, 2012, 7(3):e32754.
|
14. |
TERAO M, FRATELLI M, KUROSAKI M, et al. Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells:biological correlates and molecular targets[J]. J Biol Chem, 2011, 286(5):4027-4042.
|
15. |
ZHU S, SI M L, WU H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1)[J]. J Biol Chem, 2007, 282(19):14328-14336.
|
16. |
LEUPOLD J H, YANG H S, COLBURN N H, et al. Asangani I, post S, allgayer H.tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor(u-PAR) gene expression via sp-transcription factors[J]. Oncogene, 2007, 26(31):4550-4562.
|
17. |
ZHU S, WU H, WU F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis[J]. Cell Res, 2008, 18(3):350-359.
|
18. |
BERARDI R, MORGESE F, ONOFRI A, et al. Role of maspin in cancer[J]. Clin Transl Med, 2013, 2(1):8.
|
19. |
WANG Z X, LU B B, WANG H, et al. MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN[J]. Arch Med Res, 2011, 42(4):281-290.
|
20. |
PEREZ E A, DUECK A C, MCCULLOUGH A E, et al. Impact of PTEN protein expression on benefit from adjuvant trastuzumab in early-stage human epidermal growth factor receptor 2-positive breast cancer in the North Central Cancer Treatment Group N9831 trial[J]. J Clin Oncol, 2013, 31(17):2115-2122.
|
21. |
GABRIELY G, WURDINGER T, KESARI S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators[J]. Dig Dis Sci, 2008, 28(17):5369-5380.
|
22. |
HONG K J, HSU M C, HOU M F, et al. The tumor suppressor RECK interferes with HER-2/Neu dimerization and attenuates its oncogenic signaling[J]. FEBS Lett, 2011, 585(4):591-595.
|
23. |
SONG B, WANG C, LIU J, et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression[J]. J Exp Clin Cancer Res, 2010, 29:29.
|
24. |
CONNOLLY E C, VAN DOORSLAER K, ROGLER L E, et al. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB[J]. Mol Cancer Res, 2010, 8(5):691-700.
|
25. |
KAZEROUNIAN S, GERALD D, HUANG M, et al. RhoB differentially controls Akt function in tumor cells and stromal endothelial cells during breast tumorigenesis[J]. Cancer Res, 2013, 73(1):50-61.
|
26. |
SELCUKLU S D, DONOGHUE M T, KERIN M J, et al. Regulatory interplay between miR-21, JAG1 and 17beta-estradiol(E2)in breast cancer cells[J]. Biochem Biophys Res Commun, 2012, 423(2):234-239.
|
27. |
IZRAILIT J, BERMAN H K, DATTI A, et al. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFβpathways as fundamental Notch regulators in breast cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(5):1714-1719.
|
28. |
YANG Y, CHAERKADY R, BEER M A, et al. Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach[J]. Proteomics, 2009, 9(5):1374-1384.
|
29. |
GONG C, YAO Y, WANG Y, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer[J]. J Biol Chem, 2011, 286(21):19127-19137.
|
30. |
ANASTASOV N, HÖFIG I, VASCONCELLOS I G, et al. Radiation resistance due to high expression of miR-21 and G2, M checkpoint arrest in breast cancer cells[J]. Radiat Oncol, 2012, 7:206.
|
31. |
YAN L X, HUANG X F, SHAO Q, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis[J]. RNA, 2008, 14(11):2348-2360.
|
32. |
LEE J A, LEE H Y, LEE E S, et al. Prognostic implications of MicroRNA-21 overexpression in invasive ductal carcinomas of the breast[J]. J Breast Cancer, 2011, 14(4):269-275.
|