1. |
陈伟伟, 高润霖, 刘力生, 等. 中国心血管病报告2013概要. 中国循环杂志, 2014, 29(7): 487-491.
|
2. |
Mozaffarian D, Benjamin E J, Go A S, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation, 2015, 131(4): e29-322.
|
3. |
Zamilpa R, Navarro M, Flores I, et al. Stem cell mechanisms during left ventricular remodeling post-myocardial infarction: Repair and regeneration. World J Cardiol, 2014, 6(7): 610-620.
|
4. |
Marion M, Bax N, Spreeuwel A, et al. Material-based engineering strategies for cardiac regeneration. Curr Pharm Des, 2014, 20(12): 2057-2068.
|
5. |
Ahmed E. Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, 2015, 6(2): 105-121.
|
6. |
Kamimura W, Koyama H, Miyata T, et al. Sugar-based crosslinker forms a stable atelocollagen hydrogel that is a favorable microenvironment for 3D cell culture. J Biomed Mater Res A, 2014, 102(12): 4309-4316.
|
7. |
Sun X, Nunes S. Overview of hydrogel-based strategies for application in cardiac tissue regeneration. Biomed Mater, 2015, 10(3): 034005.
|
8. |
Nguyen M, Gianneschi N, Christman K. Developing injectable nanomaterials to repair the heart. Curr Opin Biotechnol, 2015, 34: 225-231.
|
9. |
Iwakura A, Fujita M, Kataoka K, et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels, 2003, 18(2): 93-99.
|
10. |
Shu Y, Hao T, Yao F, et al. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces, 2015, 7(12): 6505-6517.
|
11. |
Abdalla S, Makhoul G, Duong M, et al. Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction. Interact Cardiovasc Thorac Surg, 2013, 17(5): 767-772.
|
12. |
O'connor D, Naresh N, Piras B, et al. A novel cardiac muscle-derived biomaterial reduces dyskinesia and postinfarct left ventricular remodeling in a mouse model of myocardial infarction. Physiol Rep, 2015, 3(3): doi:10.14814/phy2.12351.
|
13. |
Yi X, Li X, Ren S, et al. A novel, biodegradable, thermoresponsive hydrogel attenuates ventricular remodeling and improves cardiac function following myocardial infarction - a review. Curr Pharm Des, 2014, 20(12): 2040-2047.
|
14. |
Boopathy A V, Martinez M D, Smith A W, et al. Intramyocardial delivery of notch Ligand-Containing hydrogels improves cardiac function and angiogenesis following infarction. Tissue Eng Part A, 2015, 21(17/18): 2315-2322.
|
15. |
Koudstaal S, Bastings M, Feyen D, et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res, 2014, 7(2): 232-241.
|
16. |
Projahn D, Simsekyilmaz S, Singh S, et al. Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. J Cell Mol Med, 2014, 18(5): 790-800.
|
17. |
Yao X, Liu Y, Gao J, et al. Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials, 2015, 60: 130-140.
|
18. |
Chen C, CHANG Ming, Wang S, et al. Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs. Am J Physiol Heart Circ Physiol, 2014, 306(7): H1078-H1086.
|
19. |
Boopathy A V, CHE Paolin, Somasuntharam I, et al. The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1 activation. Biomaterials, 2014, 35(28): 8103-8112.
|
20. |
Wan Wei, Jiang Xue, Li Xiao, et al. Enhanced cardioprotective effects mediated by plasmid containing the short-hairpin RNA of angiotensin converting enzyme with a biodegradable hydrogel after myocardial infarction. J Biomed Mater Res A, 2014, 102(10): 3452-3458.
|
21. |
Paul A, Hasan A, Kindi H, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano, 2014, 8(8): 8050-8062.
|
22. |
Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv Drug Deliv Rev, 2016, 96: 54-76.
|
23. |
Lee L, Wall S, Klepach D, et al. Algisyl-LVRTM with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol, 2013, 168(3): 2022-2028.
|
24. |
Anker S, Coats A, Cristian G, et al. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial) Eur Heart J, 2015, 36(34): 2297-2309.
|
25. |
Leor J, Tuvia S, Guetta V, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol, 2009, 54(11): 1014-1023.
|
26. |
Frey N, Linke A, Süselbeck T, et al. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study. Circ Cardiovasc Interv, 2014, 7(6): 806-812.
|
27. |
Llc B B. IK-5001 for the prevention of remodeling of the ventricle and congestive heart failure after acute myocardial infarction(PRESERVATION 1) [DB]. Study NCT012265 63 Available at: http://www.ClinicalTrials.gov 2010 (Accessed July 16, 2015).
|
28. |
Wang R, Christman K. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Adv Drug Deliv Rev, 2016, 96: 77-82.
|
29. |
Reis L, Chiu L, Wu J, et al. Hydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circ Heart Fail, 2015, 8(2): 333-341.
|
30. |
Singelyn J, Sundaramurthy P, Johnson T, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol, 2012, 59(8): 751-763.
|
31. |
Tsur-Gang O, Ruvinov E, Landa N, et al. The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials, 2009, 30(2): 189-195.
|
32. |
Nelson D, Ma Z, Fujimoto K, et al. Intra-myocardial biomaterial injection therapy in the treatment of heart failure: Materials, outcomes and challenges. Acta Biomater, 2011, 7(1): 1-15.
|
33. |
Miller R, Davies N H, Kortsmit J, et al. Outcomes of myocardial infarction hydrogel injection therapy in the human left ventricle dependent on injectate distribution. Int j numer method biomed eng, 2013, 29(8): 870-884.
|
34. |
Kichula E, Wang H, Dorsey S, et al. Experimental and computational investigation of altered mechanical properties in myocardium after hydrogel injection. Ann Biomed Eng, 2014, 42(7): 1546-1556.
|
35. |
Plotkin M, Vaibavi S, Rufaihah A, et al. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials, 2014, 35(5): 1429-1438.
|
36. |
Ren S, Jiang X, Li Z, et al. Physical properties of poly(N-isopropylacrylamide) hydrogel promote its effects on cardiac protection after myocardial infarction. J Int Med Res, 2012, 40(6): 2167-2182.
|
37. |
Kadner K, Dobner S, Franz T, et al. The beneficial effects of deferred delivery on the efficiency of hydrogel therapy post myocardial infarction. Biomaterials, 2012, 33(7): 2060-2066.
|
38. |
Yoon S, Hong S, FANG Yong, et al. Differential regeneration of myocardial infarction depending on the progression of disease and the composition of biomimetic hydrogel. J Biosci Bioeng, 2014, 118(4): 461-468.
|
39. |
Blackburn N, Sofrenovic T, Kuraitis D, et al. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials, 2015, 39: 182-192.
|
40. |
Dobner S, Bezuidenhout D, Govender P, et al. A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J Card Fail, 2009, 15(7): 629-636.
|
41. |
LI C, Faulkner-Jones A, DUN Ar, et al. DNA-based gel for printing organs. Nature, 2015, 518: 458.
|