1. |
中国科学院金属研究所、东南大学、泰州石墨烯研究及检测平台、中国科学院半导体研究所、泰州巨纳新能源有限公司.Q/LM01CGS001-2013石墨烯材料的名称术语和定义[S]//中国石墨烯产业技术创新战略联盟.北京:2013.
|
2. |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
|
3. |
BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer grapheme[J]. Nano Lett, 2008, 8(3):902-907.
|
4. |
SAHNI D, JEA A, MATA J A, et al. Biocompatibility of pristine graphene for neuronal interface laboratory investigation[J]. J Neurosurg Pediatr, 2013, 11(5):575-583.
|
5. |
NEZAKATI T, COUSINS B G, SEIFALIAN A M. Toxicology of chemically modified graphene-based materials for medical application[J]. Arch Toxicol, 2014, 88(11):1987-2012.
|
6. |
HUSSAIN S, IQBAL M W, PARK J, et al. Physical and electrical properties of graphene grown under different hydrogen flow in low pressure chemical vapor deposition[J]. Nanoscale Res Lett, 2014, 9(1):546.0.
|
7. |
GOENKA S, SANT V, SANT S. Graphene-based nanomaterials for drug delivery and tissue engineering[J]. J Control Release, 2014, 173(10):75-88.
|
8. |
GONÇALVES G, VILA M, PORTOLÉS M T, et al. Nano-graphene oxide:a potential multifunctional platform for cancer therapy[J]. Adv Healthc Mater, 2013, 2(8):1072-1090.
|
9. |
RADOI A, OBREJA A C, EREMIA S V, et al. L-lactic acid biosensor based on multi-layered graphene[J]. Journal of Applied Electrochemistry, 2013, 43(10):985-994.
|
10. |
GU Ming, LIU Yunsong, CHEN Tong, et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?[J]. Tissue Eng Part B Rev, 2014, 20(5):477-491.
|
11. |
LEE W C, LIM C H, SHI Hui, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano, 2011, 5(9):7334-7341.
|
12. |
ARYAEI A, JAYATISSA A H, JAYASURIYA A C. The effect of graphene substrate on osteoblast cell adhesion and proliferation[J]. J Biomed Mater Res A, 2014, 102(9):3282-3290.
|
13. |
ELKHENANY H, AMELSE L, LAFONT A, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells:potential for bone tissue engineering[J]. J Appl Toxicol, 2015, 35(4):367-374.
|
14. |
NISHIDA E, MIYAJI H, TAKITA H, et al. Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering[J]. Jpn J Appl Phys, 2014, 53(6, SI):06JD04.
|
15. |
TALUKDAR Y, RASHKOW J T, LALWANI G, et al. The effects of graphene nanostructures on mesenchymal stem cells[J]. Biomaterials, 2014, 35(18):4863-4877.
|
16. |
KUMAR S, RAJ S, KOLANTHAI E, et al. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications[J]. ACS Appl Mater Interfaces, 2015, 7(5):3237-3252.
|
17. |
LI Jinhua, WANG Gang, ZHU Hongqin, et al. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer[J]. Sci Rep, 2014, 4:4359.
|
18. |
TANG Jia, CHEN Qian, XU Ligeng, et al. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms[J]. ACS Appl Mater Interfaces, 2013, 5(9):3867-3874.
|
19. |
LA W G, PARK S, YOON H H, et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small, 2013, 9(23):4051-4060.
|
20. |
JUSTIN R, CHEN Biqiong. Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites[J]. Carbohydr Polym, 2014, 103:70-80.
|
21. |
FAN Zengjie, WANG Jinqing, WANG Zhaofeng, et al. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering[J]. Carbon N Y, 2014, 66:407-416.
|
22. |
OYEFUSI A, OLANIPEKUN O, NEELGUND G M, et al. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets:promising bone implant materials[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 132:410-416.
|
23. |
RAMANI D, SASTRY T P. Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide:a potential osteoinductive composite[J]. Cellulose, 2014, 21(5):3585-3595.
|
24. |
MA Haibin, SU Wenxin, TAI Zhixin, et al. Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane[J]. 科学通报, 2012, 57(23):3051-3058.
|
25. |
PORWAL H, GRASSO S, REECE M, et al. Review of graphene-ceramic matrix composites[J]. Advances in Applied Ceramics, 2013, 112(8):443-454.
|
26. |
GAO Chengde, LIU Tingting, SHUAI Cijun, et al. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold:mechanical and biological performance[J]. Sci Rep, 2014, 4:4712.
|
27. |
PORWAL H, GRASSO S, CORDERO-ARIAS L, et al. Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites[J]. J Mater Sci Mater Med, 2014, 25(6):1403-1413.
|
28. |
SHUAI Cijun, GAO Chengde, FENG Pei, et al. Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering[J]. RSC Adv, 2014, 4(25):12782-12788.
|
29. |
XIE Youtao, LI Hongqing, ZHANG Chi, et al. Graphene-reinforced calcium silicate coatings for load-bearing implants[J]. Biomed Mater, 2014, 9(2):025009.
|
30. |
MEHRALI M, MOGHADDAM E, SHIRAZI S F, et al. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites[J]. ACS Appl Mater Interfaces, 2014, 6(6):3947-3962.
|
31. |
DEPAN D, GIRASE B, SHAH J S, et al. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds[J]. Acta Biomater, 2011, 7(9):3432-3445.
|
32. |
DINESCU S, IONITA M, PANDELE A M, et al. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering[J]. Biomed Mater Eng, 2014, 24(6):2249-2256.
|
33. |
LIU Hongyan, CHENG Ju, CHEN Fengjuan, et al. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite:biomimetic and in vitro evaluation[J]. Nanoscale, 2014, 6(10):5315-5322.
|
34. |
BRACH DEL PREVER E M, BISTOLFI A, BRACCO P, et al. UHMWPE for arthroplasty:past or future?[J]. J Orthop Traumatol, 2009, 10(1):1-8.
|
35. |
LAHIRI D, DUA R, ZHANG Cheng, et al. Graphene nanoplatelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro[J]. ACS Appl Mater Interfaces, 2012, 4(4):2234-2241.
|
36. |
CHEN Yuanfeng, QI Yuanyuan, TAI Zhixin, et al. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites[J]. Eur Polym J, 2012, 48(6):1026-1033.
|
37. |
QI Y Y, TAI Z X, SUN D F, et al. Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds[J]. J Appl Polym Sci, 2013, 127(3):1885-1894.
|
38. |
GONÇALVES G, PORTOLÉS M T, RAMÍREZ-SANTILLÁN C, et al. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations[J]. J Mater Sci Mater Med, 2013, 24(12):2787-2796.
|