1. |
IASEMIDIS L D. Epileptic seizure prediction and control[J]. IEEE Trans Biomed Eng, 2003, 50(5): 549-558.
|
2. |
FISHER R S, BOAS W V, BLUME W, et al. Epileptic seizures and epilepsy: Definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)[J]. Epilepsia, 2005, 46(4): 470-472.
|
3. |
周昌贵. 脑电图诊断要点[J].现代电生理学杂志,2004,11(3):165-184.
|
4. |
LAI Y C, OSORIO I, FREI M G, et al. Computational neuroscience in epilepsy[M]. San Diego: Academic Press, 2008.
|
5. |
YUAN Qi, ZHOU Weidong, LI Shufang, et al. Epileptic EEG classification based on extreme learning machine and nonlinear features[J]. Epilepsy Res, 2011, 96(1/2): 29-38.
|
6. |
GUO Ling, RIVERO D, PAZOS A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks[J]. J Neurosci Methods, 2010, 193(1): 156-163.
|
7. |
YUAN Qi, ZHOU Weidong, LIU Yinxia, et al. Epileptic seizure detection with linear and nonlinear features[J]. Epilepsy Behav, 2012, 24(4): 415-421.
|
8. |
JOUNY C C, BERGEY G K. Characterization of early partial seizure onset: frequency, complexity and entropy[J]. Clin Neurophysiol, 2012, 123(4): 658-669.
|
9. |
KUMAR S P, SRIRAAM N, BENAKOP P G, et al. Entropies based detection of epileptic seizures with artificial neural network classifiers[J]. Expert Syst Appl, 2010, 37(4): 3284-3291.
|
10. |
VIDYASAGAR K E C, MOGHAVVEMI M, PRABHAT T S S T. Performance evaluation of contemporary classifiers for automatic detection of epileptic EEG[C]//IEEE International Conference on Industrial Instrumentation and Control (ICIC). Pune: IEEE, 2015: 372-377.
|
11. |
SOOD M, BHOOSHAN S V. Automatic processing of EEG signals for seizure detection using soft computing techniques[C]//IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014). Jaipur: IEEE, 2014: 1-6.
|
12. |
KOVACS P, SAMIEE K, GABBOUJ M. On application of rational discrete short time Fourier transform in epileptic seizure classification[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2014). Florence: IEEE, 2014: 5839-5843.
|
13. |
CHISCI L, MAVINO A, PERFERI G, et al. Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Trans Biomed Eng, 2010, 57(5): 1124-1132.
|
14. |
KUMAR Y, DEWAL M L, ANAND R S. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine[J]. Neurocomputing, 2014, 133(8): 271-279.
|
15. |
朱天桥, 黄力宇.单导癫痫脑电模糊特征提取的支持向量机发作预测[J].仪器仪表学报,2010,31(11):2434-2439.
|
16. |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489-501.
|
17. |
ABRY P, CHAINAIS P, COUTIN L, et al. Multifractal random walks as fractional wiener integrals[J]. IEEE Transactions on Information Theory, 2009, 55(8): 3825-3846.
|
18. |
RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. Am J Physiol Heart Circ Physiol, 2000, 278(6): H2039-H2049.
|
19. |
蔡冬梅, 周卫东,刘凯,等.基于Hurst指数和SVM的癫痫脑电检测方法[J].中国生物医学工程学报,2010,29(6):836-840.
|
20. |
徐永红, 李杏杏,赵勇.基于小波包和多元多尺度熵的癫痫脑电信号分类方法[J].生物医学工程学杂志,2013,30(5):1073-1078.
|
21. |
袁琦, 周卫东,李淑芳,等.基于ELM和近似熵的脑电信号检测方法[J].仪器仪表学报,2012,33(3):514-519.
|