1. |
Igarashi J, Fukuda N, Inoue T, et al. Preclinical study of novel gene silencer Pyrrole-Imidazole polyamide targeting human TGF-β1 promoter for hypertrophic scars in a common marmoset primate model. PLoS One, 2015, 10(5): e0125295.
|
2. |
Gottesfeld J M, Neely L, Trauger J W, et al. Regulation of gene expression by small molecules. Nature, 1997, 387(6629): 202-205.
|
3. |
Yano T, Takeuchi-Tomita N, Ueda T, et al. Pyrrole-imidazole polyamide, a synthetic DNA-binding compound, is effective at increasing levels of wild-type mtDNA in both cybrid cells and MELAS patient-derived fibroblast cells with the MELAS A3243G mutation by a selective promotion of wild-type replic. Mitochondrion, 2013, 13(6): 924-925.
|
4. |
Sato A, Nagase H, Obinata D, et al. Inhibition of MMP-9 using a pyrrole-imidazole polyamide reduces cell invasion in renal cell carcinoma. Int J Oncol, 2013, 43(5): 1441-1446.
|
5. |
Erwin G S, Bhimsaria D, Eguchi A, et al. Mapping polyamide-DNA interactions in human cells reveals a new design strategy for effective targeting of genomic sites. Angew Chem Int Ed Engl, 2014, 53(38): 10124-10128.
|
6. |
Mrksich M, Wade W S, Dwyer T J, et al. Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin. Proc Natl Acad Sci U S A, 1992, 89(16): 7586-7590.
|
7. |
Mrksich M, Parks M E, Dervan P B. Hairpin peptide motif——a new class of oligopeptides for sequence-specific recognition in the minor-groove of double-helical DNA. J Am Chem Soc, 1994, 116(18): 7983-7988.
|
8. |
Dervan P B, Burli R W. Sequence-specific DNA recognition by polyamides. Curr Opin Chem Biol, 1999, 3(6): 688-693.
|
9. |
White S, Szewczyk J W, Turner J M, et al. Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature, 1998, 391(6666): 468-471.
|
10. |
Swalley S E, Baird E E, Dervan P B. Effects of gamma-turn and beta-tail amino acids on sequence-specific recognition of DNA by hairpin polyamides. J Am Chem Soc, 1999, 121(6): 1113-1120.
|
11. |
Herman D M, Baird E E, Dervan P B. Stereochemical control of the DNA binding affinity, sequence specificity, and orientation preference of chiral hairpin polyamides in the minor groove. J Am Chem Soc, 1998, 120(7): 1382-1391.
|
12. |
Meier J L, Montgomery D C, Dervan P B. Enhancing the cellular uptake of Py-Im polyamides through next-generation aryl turns. Nucleic Acids Res, 2012, 40(5): 2345-2356.
|
13. |
Yang F, Nickols N G, Li B C, et al. Animal toxicity of hairpin pyrrole-imidazole polyamides varies with the turn unit. J Med Chem, 2013, 56(18): 7449-7457.
|
14. |
Synold T W, Xi B, Wu J, et al. Single-dose pharmacokinetic and toxicity analysis of pyrrole-imidazole polyamides in mice. Cancer Chemother Pharmacol, 2012, 70(4): 617-625.
|
15. |
Li B C, Montgomery D C, Puckett J W, et al. Synthesis of cyclic Py-Im polyamide libraries. J Org Chem, 2013, 78(1): 124-133.
|
16. |
Turner J M, Swalley S E, Baird E E, et al. Aliphatic/aromatic amino acid pairings for polyamide recognition in the minor groove of DNA. J Am Chem Soc, 1998, 120(25): 6219-6226.
|
17. |
Anandhakumar C, Li Yue, Kizaki S, et al. Next-generation sequencing studies guide the design of pyrrole-imidazole polyamides with improved binding specificity by the addition of β-alanine. Chembiochem, 2014, 15(18): 2647-2651.
|
18. |
Kawamoto Y, Bando T, Kamada F, et al. Development of a new method for synthesis of tandem hairpin pyrrole-imidazole polyamide probes targeting human telomeres. J Am Chem Soc, 2013, 135(44): 16468-16477.
|
19. |
Kawamoto Y, Sasaki A, Hashiya K, et al. Tandem trimer pyrrole-imidazole polyamide probes targeting 18 base pairs in human telomere sequences. Chem Sci, 2015, 6(4): 2307-2312.
|
20. |
Bashkin J K, Aston K, Ramos J P, et al. Promoter scanning of the human COX-2 gene with 8-ring polyamides: unexpected weakening of polyamide-DNA binding and selectivity by replacing an internal N-Me-pyrrole with β-alanine. Biochimie, 2013, 95(2): 271-279.
|
21. |
Marques M A, Doss R M, Urbach A R, et al. Toward an understanding of the chemical etiology for DNA minor-groove recognition by polyamides. Helv Chim Acta, 2002, 85(12): 4485-4517.
|
22. |
Han Y W, Matsumoto T, Yokota H, et al. Binding of hairpin pyrrole and imidazole polyamides to DNA: relationship between torsion angle and association rate constants. Nucleic Acids Res, 2012, 40(22): 11510-11517.
|
23. |
Wang S, Chai Y, Babu B, et al. Conformational modulation of DNA by polyamide binding: structural effects of f-Im-Py-Im based derivatives on 5'-ACGCGT-3'. J Mol Recognit, 2013, 26(8): 331-340.
|
24. |
Hargrove A E, Martinez T F, Hare A A, et al. Tumor repression of VCaP xenografts by a pyrrole-imidazole polyamide. PLoS One, 2015, 10(11): e0143161.
|
25. |
Tsunemi A, Ueno T, Fukuda N, et al. A novel gene regulator, pyrrole-imidazole polyamide targeting ABCA1 gene increases cholesterol efflux from macrophages and plasma HDL concentration. J Mol Med, 2014, 92(5): 509-521.
|
26. |
Kummer N T, Yang F, Dervan P, et al. Radiosensitization by DNA, binding pyrrole, imidazole polyamides. Int J Radiat Oncol Biol Phys, 2015, 93(3, S): E537-E538.
|
27. |
He G, Bashkin J K. What is the antiviral potential of pyrrole-imidazole polyamides?. Future Med Chem, 2015, 7(15): 1953-1955.
|
28. |
Edwards T G, Vidmar T J, Koeller K, et al. DNA damage repair genes controlling human papillomavirus (HPV) episome levels under conditions of stability and extreme instability. PLoS One, 2013, 8(10): e75406.
|
29. |
Martínez T F, Phillips J W, Karanja K K, et al. Replication stress by Py-Im polyamides induces a non-canonical ATR-dependent checkpoint response. Nucleic Acids Res, 2014, 42(18): 11546-11559.
|
30. |
Taylor R D, Asamitsu S, Takenaka T, et al. Sequence-specific DNA alkylation targeting for Kras codon 13 mutation by pyrrole-imidazole polyamide seco-CBI conjugates. Chemistry, 2014, 20(5): 1310-1317.
|
31. |
Hiraoka K, Inoue T, Taylor R D, et al. Inhibition of KRAS codon 12 mutants using a novel DNA-alkylating pyrrole-imidazole polyamide conjugate. Nat Commun, 2015, 6: 6706.
|
32. |
Yamamoto M, Bando T, Kawamoto Y, et al. Specific alkylation of human telomere repeat sequences by a tandem-hairpin motif of pyrrole-imidazole polyamides with indole-seco-CBI. Bioconjug Chem, 2014, 25(3): 552-559.
|
33. |
Park S, Bando T, Shinohara K I, et al. Photocontrollable sequence-specific DNA alkylation by a pyrrole-imidazole polyamide seco-CBI conjugate. Bioconjug Chem, 2011, 22(2): 120-124.
|
34. |
Pandian G N, Sugiyama H. Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J, 2012, 7(6): 798-809.
|
35. |
Pandian G N, Shinohara K, Ohtsuki A, et al. Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. Chembiochem, 2011, 12(18): 2822-2828.
|
36. |
Li Chao, Du Chao, Tian Hua, et al. Artificial transcription factors which mediate double-strand DNA cleavage. Chemistry, 2010, 16(43): 12935-12940.
|
37. |
Vaijayanthi T, Bando T, Pandian G N, et al. Progress and prospects of pyrrole-imidazole polyamide-fluorophore conjugates as sequence-selective DNA probes. Chembiochem, 2012, 13(15): 2170-2185.
|
38. |
Vaijayanthi T, Bando T, Hashiya K, et al. Design of a new fluorescent probe: pyrrole/imidazole hairpin polyamides with pyrene conjugation at their γ-turn. Bioorg Med Chem, 2013, 21(4): 852-855.
|
39. |
Obinata Daisuke, Ito A, Fujiwara K, et al. Pyrrole-imidazole polyamide targeted to break fusion sites in TMPRSS2 and ERG gene fusion represses prostate tumor growth. Cancer Sci, 2014, 105(10): 1272-1278.
|
40. |
Mishra R, Watanabe T, Kimura M T, et al. Identification of a novel E-box binding pyrrole-imidazole polyamide inhibiting MYC-driven cell proliferation. Cancer Sci, 2015, 106(4): 421-429.
|
41. |
Yoshizawa S, Fujiwara K, Sugito K, et al. Pyrrole-imidazole polyamide-mediated silencing of KCNQ1OT1 expression induces cell death in Wilms' tumor cells. Int J Oncol, 2015, 47(1): 115-121.
|
42. |
Raskatov J A, Szablowski J O, Dervan P B. Tumor xenograft uptake of a pyrrole-imidazole (Py-Im) polyamide varies as a function of cell line grafted. J Med Chem, 2014, 57(20): 8471-8476.
|