1. |
Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.
|
2. |
Niedźwiedzki T, Filipowska J. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol, 2015, 55(2): R23-R36.
|
3. |
Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST) Hum Mol Genet, 2001, 10(5): 537-543.
|
4. |
Brunkow M E, Gardner J C, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet, 2001, 68(3): 577-589.
|
5. |
Kim H J, Yoon H J, Yoon K A, et al. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells. Exp Cell Res, 2015, 334(2): 301-309.
|
6. |
Zhao Chen, Irie N, Takada Yasunari, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab, 2006, 4(2): 111-121.
|
7. |
Delaisse J M. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep, 2014, 3(3): 561.
|
8. |
Väänänen H K, Horton M. The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci, 1995, 108(Pt 8): 2729-2732.
|
9. |
Kleinhans C, Schmid F F, Schmid F V, et al. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D. J Biotechnol, 2015, 205: 101-110.
|
10. |
Honma M, Ikebuchi Y, Kariya Y, et al. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep, 2014, 12(1): 115-120.
|
11. |
Martin T J, Sims N A. RANKL/OPG; critical role in bone physiology. Rev Endocr Metab Disord, 2015, 16(2): 131-139.
|
12. |
Sapir-Koren R, Livshits G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles?. Osteoporos Int, 2014, 25(12): 2685-2700.
|
13. |
Yuan X, Cao J, Liu T, et al. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss. Cell Death Differ, 2015, 22(12): 2046-2057.
|
14. |
Koide N, Kondo Y, Odkhuu E, et al. Inhibition of receptor activator of nuclear factor-κB ligand-or lipopolysaccharide-induced osteoclast formation by conophylline through downregulation of CREB. Immunol Lett, 2014, 161(1): 31-37.
|
15. |
Johnson R W, Mcgregor N E, Brennan H J, et al. Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone, 2015, 81: 343-351.
|
16. |
Wozney J M, Rosen V, Celeste A J, et al. Novel regulators of bone formation: molecular clones and activities. Science, 1988, 242(4885): 1528-1534.
|
17. |
Thudium C S, Moscatelli I, Flores C, et al. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation. Calcif Tissue Int, 2014, 95(1): 83-93.
|
18. |
Tanaka K, Hashizume M, Mihara M, et al. Anti-interleukin-6 receptor antibody prevents systemic bone mass loss via reducing the number of osteoclast precursors in bone marrow in a collagen-induced arthritis model. Clin Exp Immunol, 2014, 175(2): 172-180.
|
19. |
Lu Lei, Huang Jinghui, Zhang Xu, et al. Changes of temporomandibular joint and semaphorin 4D/Plexin-B1 expression in a mouse model of incisor malocclusion. Journal of oral & facial pain and headache, 2014, 28(1): 68-79.
|
20. |
Sato K, Itoh T, Kato T, et al. Serum-free isolation and culture system to enhance the proliferation and bone regeneration of adipose tissue-derived mesenchymal stem cells. In Vitro Cell Dev Biol Anim, 2015, 51(5): 515-529.
|
21. |
Ellies D L, Economou A, Viviano B, et al. Wise regulates bone deposition through genetic interactions with Lrp5. PLoS One, 2014, 9(5): e96257.
|
22. |
Beederman M, Lamplot J D, Nan G, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng, 2013, 6(8A): 32-52.
|
23. |
Anderson H C. Matrix vesicles and calcification. Curr Rheumatol Rep, 2003, 5(3): 222-226.
|
24. |
Park K, Ju W C, Yeo J H, et al. Increased OPG/RANKL ratio in the conditioned medium of soybean-treated osteoblasts suppresses RANKL-induced osteoclast differentiation. Int J Mol Med, 2014, 33(1): 178-184.
|
25. |
Chukkapalli S, Levi E, Rishi A K, et al. PTHrP attenuates osteoblast cell death and apoptosis induced by a novel class of anti-cancer agents. Endocrine, 2016, 51(3): 534-544.
|
26. |
Hu Minyi, Tian G W, Gibbons D E, et al. Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte Calcium oscillations. Arch Biochem Biophys, 2015, 579: 55-61.
|
27. |
Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int, 2014, 94(1): 25-34.
|
28. |
Horwood N J. Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol, 2016, 51(1): 79-86.
|
29. |
Brandi M L, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res, 2006, 21(2): 183-192.
|
30. |
Tomlinson R E, Silva M J. HIF-1α regulates bone formation after osteogenic mechanical loading. Bone, 2015, 73: 98-104.
|
31. |
Meednu N, Zhang Hengwei, Owen T, et al. Production of RANKL by memory B cells: a Link between B cells and bone erosion in rheumatoid arthritis. Arthritis & rheumatology (Hoboken, N. J.), 2016, 68(4): 805-816.
|
32. |
Hu Y, Ek-Rylander B, Wendel M, et al. Reciprocal effects of Interferon-γ and IL-4 on differentiation to osteoclast-like cells by RANKL or LPS. Oral Dis, 2014, 20(7): 682-692.
|