1. |
贺超. 核磁共振成像系统原理及 MR 图像研究. 云南大学学报: 自然科学版, 2010, 32(S1): 245-248.
|
2. |
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
|
3. |
Candes E, Roberg J, Tao T. Robust uncertainty principles: exact signal recognition from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
|
4. |
李修寒, 朱松盛. 基于压缩感知理论的医学图像重构算法研究现状. 生物医学工程学进展, 2014, 35(4): 216-242.
|
5. |
Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging camera architecture using optical domain compression//Proceedings of the 2006 IS&T/SPIE Symposium on Electronic Imaging: Computational Imaging. San Jose, California, United States: SPIE, 2006, 6065: 43-52.
|
6. |
李中源, 李光, 孙翌, 等. 一种基于全局字典学习的小动物低剂量计算机断层扫描降噪方法. 生物医学工程学杂志, 2016, 33(2): 279-286.
|
7. |
李龙珍, 姚旭日, 刘雪峰, 等. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 42011-42016.
|
8. |
吴建宁, 徐海东, 王佳境, 等. 基于随机投影的快速稀疏表示人体动作识别方法. 中国生物医学工程学报, 2016, 35(1): 38-46.
|
9. |
Liu Y, Cai J F, Zhan Z, et al. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging. PLoS One, 2015, 10(4): 1-19.
|
10. |
Huang Jinhong, Guo Li, Feng Qianjin, et al. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data. Phys Med Biol, 2015, 60(14): 5359-5380.
|
11. |
Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med, 2007, 58(6): 1182-1195.
|
12. |
Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled space data by dictionary learning. IEEE Trans Med Imaging, 2011, 30(5): 1028-1041.
|
13. |
Ravishankar S, Bresler Y. Sparsifing transform learning for compressed sensing MRI//IEEE International Symposium on Biomedical Imaging: From Nano to Macro. San Francisco, USA: IEEE, 2013: 17-20.
|
14. |
Ravishankar S, Bresler Y. Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging. SIAM J Imaging Sci, 2015, 8(4): 2519-2557.
|
15. |
Wang X Y, Guo X, Zhang D D. An effective fractal image compression algorithm based on plane fitting. Chin Phys B, 2012, 21(9): 090507.
|
16. |
宁方立, 何碧静, 韦娟. 基于 l p 范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 42121-42128.
|
17. |
Yaghoobi M, Nam S, Gribonval R, et al. Constrained over-complete analysis operator learning for co-sparse signal modeling. IEEE Transactions on Signal Processing, 2013, 61(9): 2141-2355.
|
18. |
Hawe S, Kleinsteuber M, Diepold K. Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 2013, 22(6): 2138-2150.
|
19. |
Chen Yunjin, Ranftl R, Pock T. Insights into analysis operator learning: from patch-based sparse models to higher order MRFs. IEEE Transactions on Image Processing, 2014, 23(3): 1060-1072.
|
20. |
Giryes R, Nam S, Elad M, et al. Greedy-like algorithms for the co-sparse analysis model. Linear Algebra Appl, 2014, 441: 22-60.
|
21. |
Rubinstein R, Peleg T, Elad M. Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Processing, 2013, 61(3): 661-677.
|
22. |
Ravishankar S, Bresler Y. Learning sparsifying transforms. IEEE Transactions on Signal Processing, 2013, 61(5): 1072-1086.
|
23. |
Eksioglu E M, Bayir O. K-SVD meets transform learning: transform K-SVD. IEEE Signal Process Lett, 2014, 21(3): 347-351.
|