1. |
Cowin S C. Bone poroelasticity. J Biomech, 1999, 32(3): 217-238.
|
2. |
Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12(2): 155-164.
|
3. |
Zhang D J, Weinbaum S, Cowin S C. On the calculation of bone pore water pressure due to mechanical loading. Int J Solids Struct, 1998, 35(34/35): 4981-4997.
|
4. |
Rémond A, Naili S. Transverse isotropic poroelastic osteon model under cyclic loading. Mech Res Commun, 2005, 32(6): 645-651.
|
5. |
Wu Xiaogang, Chen Weiyi. A hollow osteon model for examining its poroelastic behaviors: Mathematically modeling an osteon with different boundary cases. European Journal of Mechanics A/Solids, 2013, 40: 34-49.
|
6. |
Wu Xiaogang, Chen Weiyi, Gao Zhipeng, et al. The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics and Astronomy, 2012, 55(9): 1646-1656.
|
7. |
Wu Xiaogang, Chen Weiyi. Poroelastic behaviors of the osteon: A comparison of two theoretical osteon models. Acta Mech Sinica, 2013, 29(4): 612-621.
|
8. |
Cen Haipeng, Wu Xiaogang, Yu Weilun, et al. Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon: a finite element study. Acta of Bioengineering and Biomechanics, 2016, 18(1): 3-10.
|
9. |
Wu Xiaogang, Wang Yanqin, Wu Xiaohong, et al. Effects of microcracks on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics & Astronomy, 2014, 57(11): 2161-2167.
|
10. |
Pfenniger A, Obrist D, Stahel A, et al. Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator. Med Biol Eng Comput, 2013, 51(7): 741-755.
|
11. |
Pfenniger A, Stahel A, Koch V M, et al. Energy harvesting through arterial wall deformation: A FEM approach to fluid-structure interactions and magneto-hydrodynamics. Appl Math Model, 2014, 38(13): 3325-3338.
|
12. |
Wu Xiaogang, Chen Weiyi, Wang Danxia. Mathematical osteon model for examining poroelastic behaviors. Applied Mathematics and Mechanics-English Edition, 2013, 34(4): 405-416.
|
13. |
Nguyen V H, Lemaire T, Naili S. Anisotropic poroelastic hollow cylinders with damaged periphery under harmonic axial loading: relevance to bone remodelling. Multidiscipline Modeling in Materials and Structures, 2009, 5(3): 205-222.
|
14. |
Nguyen V H, Lemaire T, Naili S. Influence of interstitial bone microcracks on strain-induced fluid flow. Biomech Model Mechanobiol, 2011, 10(6): 963-972.
|
15. |
Remond A, Naili S, Lemaire T. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study. Biomech Model Mechanobiol, 2008, 7(6): 487-495.
|
16. |
Mak A F T, Huang D T, Zhang J D, et al. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity. J Biomech, 1997, 30(1): 11-18.
|
17. |
You L, Cowin S C, Schaffler M B, et al. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech, 2001, 34(11): 1375-1386.
|
18. |
Cowin S C, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech, 2015, 48(5, SI): 842-854.
|
19. |
Nguyen V H, Lemaire T, Naili S. Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale. Med Eng Phys, 2010, 32(4): 384-390.
|
20. |
Wu Xiaogang, Yu Weilun, Wang Zhaowei, et al. Effects of the Haversian fluid pressure on the canalicular fluid flow rates and shear stress. Basic & Clinical Pharmacology & Toxicology, 2015, 117(Suppl 3): 1.
|
21. |
Wu Xiaogang, Yu Weilun, Cen Haipeng, et al. Hierarchical model for strain generalized streaming potential induced by the canalicular fluid flow of an osteon. Acta Mech Sinica, 2015, 31(1): 112-121.
|