1. |
Frost H M. Bone mass and the mechanostat—A proposal. Anat Rec, 1987, 219(1): 1-9.
|
2. |
Mack P B, Lachance P L. Effects of recumbency and space flight on bone density. Am J Clin Nutr, 1967, 20(11): 1194-1205.
|
3. |
Rambaut P C, Leach C S, Johnson P C. Calcium and phosphorus change of the Apollo 17 crew members. Nutr Metab, 1975, 18(2): 62-69.
|
4. |
Brodzinski R L, Rancitelli L A, Haller W A, et al. Calcium, potassium, and iron loss by Apollo Ⅶ, Ⅷ, Ⅸ, Ⅹ and Ⅺ astronauts. Aerosp Med, 1971, 42(6): 621-626.
|
5. |
Rambaut P C, Leach C S, Whedon G D. A study of metabolic balance in crewmembers of Skylab Ⅳ. Acta Astronaut, 1979, 6(10): 1313-1322.
|
6. |
Leblanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact, 2000, 1(2): 157-160.
|
7. |
万宇峰, 张琳, 喻昕阳, 等. 45 d–6° 头低位卧床对尿 Ca 和 P 含量及其昼夜节律的影响. 航天医学与医学工程, 2015, 28(1): 11-15.
|
8. |
Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res, 1992(274): 124-134.
|
9. |
雷周激欣, 王冬梅, 王春慧, 等. 不同力学激励对骨重建数值模拟的影响不同力学激励对骨重建数值模拟的影响. 医用生物力学, 2015, 30(4): 299-303.
|
10. |
Carter D R, Hayes W C. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am, 1977, 59(7): 954-962.
|
11. |
Peng Liang, Bai Jing, Zeng Xiaoli, et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys, 2006, 28(3): 227-233.
|
12. |
Miller Z, Fuchs M B, Arcan M. Trabecular bone adaptation with an orthotropic material model. J Biomech, 2002, 35(2): 247-256.
|
13. |
Viceconti M, Ansaloni M, Baleani M, et al. The muscle standardized femur: a step forward in the replication of numerical studies in biomechanics. Proc Inst Mech Eng H, 2003, 217(H2): 105-110.
|
14. |
San Antonio T, Ciaccia M, Mueller-Karger C, et al. Orientation of orthotropic material properties in a femur FE model: A method based on the principal stresses directions. Med Eng Phys, 2012, 34(7): 914-919.
|
15. |
Alkner B A, Tesch P A. Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol, 2004, 93(3): 294-305.
|
16. |
Sarikanat M, Yildiz H. Determination of bone density distribution in proximal femur by using the 3D orthotropic bone adaptation model. Proceedings of the Institution of Mechanical Engineers Part H. Journal of Engineering in Medicine, 2011, 225(4):365-375.
|
17. |
Lang T, Leblanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res, 2004, 19(6): 1006-1012.
|
18. |
Leblanc A D, Schneider V S, Evans H J, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res, 1990, 5(8): 843-850.
|
19. |
朱兴华, 宫赫, 白雪飞, 等. 弹性模量与表观密度的分段函数关系用于股骨近端的结构模拟. 中国生物医学工程学报, 2003, 22(3): 250-257.
|
20. |
Tsouknidas A, Anagnostidis K, Maliaris G, et al. Fracture risk in the femoral hip region: A finite element analysis supported experimental approach. J Biomech, 2012, 45(11): 1959-1964.
|