1. |
第二次全国残疾人抽样调查办公室. 第二次全国残疾人抽样调查资料. 北京: 中国统计出版社, 2007.
|
2. |
Moore B C J. Cochlear hearing loss: physiological, psychological and technical issues. 2nd ed. Chichester: John Wiley & Sons, 2007: 1-332.
|
3. |
Gan R Z, Dai C, Wang X, et al. A totally implantable hearing system—design and function characterization in 3D computational model and temporal bones. Hear Res, 2010, 263(1/2): 138-144.
|
4. |
Liu Houguang, Rao Zhushi, Huang Xinsheng, et al. An incus-body driving type piezoelectric middle ear implant design and evaluation in 3D computational model and temporal bone. Scientific World Journal, 2014, 2014(4): 121624.
|
5. |
Colletti V, Soli S, Carner M, et al. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int J Audiol, 2006, 45(10): 600-608.
|
6. |
Sprinzl G, Wolf-Magele A, Schnabl J, et al. The active middle ear implant for the rehabilitation of sensorineural, mixed and conductive hearing losses. Laryngorhinootologie, 2011, 90(9): 560-572.
|
7. |
Arnold A, Stieger C, Candreia C, et al. Factors improving the vibration transfer of the floating mass transducer at the round window. Otol Neurotol, 2010, 31(1): 122-128.
|
8. |
Zhang X, Gan Rong. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng, 2011, 58(10): 3024-3027.
|
9. |
Maier H, Salcher R, Schwab B, et al. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator. Hear Res, 2013, 301(7): 115-124.
|
10. |
Lupo J E, Koka K, Hyde B J, et al. Physiological assessment of active middle ear implant coupling to the round window in Chinchilla lanigera. Otolaryngol Head Neck Surg, 2011, 145(4): 641-647.
|
11. |
田佳彬, 饶柱石, 塔娜, 等. 人工中耳悬浮式压电振子的优化设计. 振动与冲击, 2015, 34(5): 135-140.
|
12. |
Zwislocki J. Analysis of the middle-ear function. Part Ⅰ: input impedance. J Acoust Soc Am, 1962, 34(9B): 1514-1523.
|
13. |
王学林. 蜗窗激励与外耳道激励产生的耳蜗压力差的比较分析. 生物医学工程学杂志, 2012, 29(6): 1109-1113.
|
14. |
Tian Jiabin, Huang Xinsheng, Rao Zhushi, et al. Finite element analysis of the effect of actuator coupling conditions on round window stimulation. J Mech Med Biol, 2015, 15(4): 1550048.
|
15. |
王应丰, 沈高飞, 塔娜, 等. 声桥系统压电植入振子力学建模及参数优化. 振动与冲击, 2009, 28(3): 108-111.
|
16. |
刘后广, 塔娜, 饶柱石. 新型人工中耳压电振子设计. 振动与冲击, 2011, 30(7): 112-115, 126.
|
17. |
王学林, 胡于进. 蜗窗激励评价的有限元计算模型研究. 力学学报, 2012, 44(3): 622-630.
|
18. |
Békésy G V. Experiments in hearing. New York: McGraw-Hill, 1960.
|
19. |
Kringlebotn M, Gundersen T, Krokstad A, et al. Noise-induced hearing losses. Can they be explained by basilar membrane movement?. Acta Otolaryngol Suppl, 1979, 360(sup360): 98-101.
|
20. |
Gundersen T, Skarstein O, Sikkeland T. A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the Mössbauer effect. Acta Otolaryngol, 1978, 86(3/4): 225-232.
|
21. |
Puria S, Peake W, Rosowski J. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J Acoust Soc Am, 1997, 101(5 Pt 1): 2754-2770.
|
22. |
Aibara R, Welsh J, Puria S, et al. Human middle-ear sound transfer function and cochlear input impedance. Hear Res, 2001, 152(1/2): 100-109.
|
23. |
Ghasemi-Nejhad M N, Pourjalali S, Uyema M, et al. Finite element method for active vibration suppression of smart composite structures using piezoelectric materials. J Thermoplast Compos Mater, 2006, 19(3): 309-352.
|
24. |
刘后广. 新型人工中耳压电振子听力补偿的理论与实验研究. 上海: 上海交通大学, 2011.
|
25. |
Laursen W. Breaking the sound barrier[cochlear implants]. Engineering & Technology, 2006, 1(3): 38-41.
|
26. |
Hong E P, Kim M K, Park I Y, et al. Vibration modeling and design of piezoelectric floating mass transducer for implantable middle ear hearing devices. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2007, 90(8): 1620-1627.
|
27. |
Ma J, Yao W. Research on the distribution of pressure field on the basilar membrane in the passive spiral cochlea. J Mech Med Biol, 2014, 14(04): 1450061.
|
28. |
Sun Q, Gan R Z, Chang K H, et al. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol, 2002, 1(2): 109-122.
|