1. |
袁凯. 丝素蛋白在组织工程中的应用和降解性研究. 医学研究杂志, 2011, 40(10): 153-155.
|
2. |
王宏昕, 李敏. 丝素蛋白作为组织工程生物材料的研究进展. 中国修复重建外科杂志, 2008, 22(2): 192-195.
|
3. |
周婵, 刘彬, 王介平, 等. 家蚕丝素蛋白在组织工程中的应用研究进展. 中国畜牧杂志, 2013, 49(23): 91-94.
|
4. |
孔令玲, 李延报. 丝素蛋白支架的制备及其在组织工程中的应用. 材料科学与工程学报, 2013, 31(4): 614-620.
|
5. |
Mottaghitalab F, Hosseinkhani H, Shokrgozar M A, et al. Silk as a potential candidate for bone tissue engineering. J Control Release, 2015, 215: 112-128.
|
6. |
谢敏凯, 徐月敏. 丝素蛋白材料在组织工程中的新进展. 中国组织工程研究, 2012, 16(43): 8105-8110.
|
7. |
陈艳雄, 陈敏, 朱谱新, 等. 丝素蛋白的研究和应用进展. 纺织科技进展, 2007, 2007(2): 13-18.
|
8. |
施李杨, 杨明英, 朱良均. 丝素蛋白生物材料在骨修复中的应用研究进展. 蚕业科学, 2013, 39(4): 812-819.
|
9. |
Yao D, Liu H, Fan Y. Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med (Maywood), 2016, 241(3): 238-245.
|
10. |
于同隐, 梅娜, 陈光, 等. 丝素蛋白在组织工程中的应用. 复旦学报: 自然科学版, 2003, 42(6): 828-832.
|
11. |
Nudelman F, Sommerdijk N A. Biomineralization as an inspiration for materials chemistry. Angew Chem Int Ed Engl, 2012, 51(27): 6582-6596.
|
12. |
Sailaja G S, Ramesh P, Vellappally S, et al. Biomimetic approaches with smart interfaces for bone regeneration. J Biomed Sci, 2016, 23(1): 77.
|
13. |
Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 2016, 31: 1-16.
|
14. |
王生杰, 蔡庆伟, 杜明轩, 等. 二氧化硅的仿生矿化. 化学进展, 2015, 27(2/3): 229-241.
|
15. |
Zhou Xianfeng, Zhang Nianli, Mankoci S, et al. Silicates in orthopedics and bone tissue engineering materials. J Biomed Mater Res A, 2017, 105(7): 2090-2102.
|
16. |
程成, 邵正中, 陈新. 蚕丝蛋白与硅溶胶复合材料的研究. 高分子学报, 2008, 1(10): 974-978.
|
17. |
Hou A, Chen H. Preparation and characterization of silk/silica hybrid biomaterials by sol–gel crosslinking process. Materials Science & Engineering B, 2010, 167(2): 124-128.
|
18. |
徐水, 张胡静, 李雯静, 等. 丝素/纳米SiO2凝胶共混膜的制备及性能测试. 蚕业科学, 2011, 37(1): 82-87.
|
19. |
朱海霖, 吴斌伟, 冯新星, 等. 丝素蛋白/硅酸钙复合纳米纤维的结构与性能. 纺织学报, 2011, 32(6): 1-6.
|
20. |
Zhu Hailin, Wu Binwei, Feng Xinxing, et al. Preparation and characterization of bioactive mesoporous calcium silicate-silk fibroin composite films. J Biomed Mater Res B Appl Biomater, 2011, 98(2): 330-341.
|
21. |
Kharlampieva E, Kozlovskaya V, Wallet B, et al. Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites. ACS Nano, 2010, 4(12): 7053-7063.
|
22. |
Mieszawska A J, Fourligas N, Georgakoudi I, et al. Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 2010, 31(34): 8902-8910.
|
23. |
Ghorbanian L, Emadi R, Razavi S M, et al. Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Int J Biol Macromol, 2013, 58: 275-280.
|
24. |
Su Dihan, Jiang Libo, Chen Xin, et al. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces, 2016, 8(15): 9619-9628.
|
25. |
Wong P F C, Patwardhan S V, Belton D J, et al. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A, 2006, 103(25): 9428-9433.
|
26. |
Plowright R, Dinjaski N, Zhou Shun, et al. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification. RSC Adv, 2016, 6(26): 21776-21788.
|
27. |
Canabady-Rochelle L L, Belton D J, Deschaume O, et al. Bioinspired silicification of silica-binding peptide-silk protein chimeras: comparison of chemically and genetically produced proteins. Biomacromolecules, 2012, 13(3): 683-690.
|
28. |
Zhou S, Huang W, Belton D J, et al. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides (SiBPs). Acta Biomaterialia, 2015, 15: 173-180.
|
29. |
Belton D J, Mieszawska A J, Currie H A, et al. Silk–silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir, 2012, 28(9): 4373-4381.
|
30. |
Mieszawska A J, Nadkarni L D, Perry C C, et al. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater, 2010, 22(20): 5780-5785.
|