1. |
Rieta J J, Castells F, Sánchez C, et al. Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans Biomed Eng, 2004, 51(7): 1176-1186.
|
2. |
Kalsi M, Prakash N R. A new algorithm for detection of atrial fibrillation//2016 International conference on electrical, electronics, and optimization techniques (ICEEOT), 2016: 3177-3182.
|
3. |
Ortigosa N, Cano O, Galbis A, et al. Time-Frequency analysis for early classification of persistent and Long-Standing persistent atrial fibrillation//2016 Computing In Cardiology Conference (CINC), 2016, 43: 673-676.
|
4. |
Liu C, Eggen M D, Swingen C M, et al. Noninvasive mapping of transmural potentials during activation in swine hearts from body surface electrocardiograms. IEEE Trans Med Imaging, 2012, 31(9): 1777-1785.
|
5. |
Zhou Zhaoye, Jin Qi, Chen Linyee, et al. Noninvasive imaging of High-Frequency drivers and Reconstruction of global dominant frequency Maps in patients with paroxysmal and persistent atrial fibrillation. IEEE Trans Biomed Eng, 2016, 63(6): 1333-1340.
|
6. |
Han Chengzong, Liu Zhongming, Zhang Xin, et al. Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Trans Med Imaging, 2008, 27(11): 1622-1630.
|
7. |
Guillem M S, Climent A M, Castells F, et al. Noninvasive mapping of human atrial fibrillation. J Cardiovasc Electrophysiol, 2009, 20(5): 507-513.
|
8. |
Li G, He B. Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. IEEE Trans Biomed Eng, 2001, 48(6): 660-669.
|
9. |
He Bin, Li Guanglin, Zhang Xin. Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model. Phys Med Biol, 2002, 47(22): 4063-4078.
|
10. |
He Bin, Li Guanglin, Zhang Xin. Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans Biomed Eng, 2003, 50(10): 1190-1202.
|
11. |
Giffard-Roisin S, Jackson T, Fovargue L, et al. Noninvasive personalization of a cardiac electrophysiology model from body surface potential mapping. IEEE Trans Biomed Eng, 2017, 64(9): 2206-2218.
|
12. |
Michal K, Herve R, Malgorzata F, et al. The effect of precordial lead displacement on p-wave morphology in body surface potential mapping. Comput Cardiol, 2013, 40: 531-534.
|
13. |
王德玺, 杨翠微. 房颤病人体表标测信号的 f 波提取方法研究. 仪器仪表学报, 2016, 37(10): 2359-2365.
|
14. |
Botteron G W, Smith J M. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans Biomed Eng, 1995, 42(6): 579-586.
|
15. |
Li Wenhai, Yang Cuiwei, Wang Yanlei, et al. Several insights into the preprocessing of electrograms in atrial fibrillation for dominant frequency analysis. Biomed Eng Online, 2016, 15(1): 38.
|
16. |
Ghanavati G, Hines P D, Lakoba T I. Understanding early indicators of critical transitions in power systems from autocorrelation functions. IEEE Transactions on Circuits and Systems I-Regular Papers, 2014, 61(9): 2747-2760.
|
17. |
周拓. 基于心外膜标测技术的房颤电信号处理方法研究. 上海: 复旦大学, 2010.
|
18. |
Ng J, Kadish A H, Goldberger J J. Technical considerations for dominant frequency analysis. J Cardiovasc Electrophysiol, 2007, 18(7): 757-764.
|
19. |
Lemay M, Prudat Y, Jacquemet V, et al. Phase-rectified signal averaging used to estimate the dominant frequencies in ECG signals during atrial fibrillation. IEEE Trans Biomed Eng, 2008, 55(11): 2538-2547.
|