1. |
黄乾荣, 张玲. 原发性肝癌治疗研究新进展. 实用医学杂志, 2016, 32(14): 2275-2278.
|
2. |
青格乐图, 金刚.肝癌手术治疗的研究进展. 中国民族民间医药, 2015, 24(4): 41-42.
|
3. |
胡贝贝. 层析芯片阳性信号的信息提取和定量分析研究. 上海: 上海交通大学, 2010.
|
4. |
黄芳. 图像分割方法研究. 赤峰学院学报: 自然科学版, 2016, 32(21): 20-21.
|
5. |
Sethi G, Saini B S, Singh D. Segmentation of cancerous regions in liver using an edge-based and phase congruent region enhancement method. Computers & Electrical Engineering, 2016, 53: 244-262.
|
6. |
Patil S, Udupi V R, Patole D. A robust system for segmentation of primary liver tumor in CT images. Int J Comput Appl, 2013, 75(13): 6-10.
|
7. |
Baâzaoui A, Barhoumi W, Ahmed A, et al. Semi-Automated segmentation of single and multiple tumors in liver CT images using Entropy-Based fuzzy region growing. IRBM, 2017, 38(2): 98-108.
|
8. |
Abd-Elaziz O F, Sayed M S, Abdullah M I. Liver tumors segmentation from abdominal CT images using region growing and morphological processing// International Conference on Engineering and Technology, Cairo, 2015:1-6.
|
9. |
Yan Jiayong, Schwartz L H, Zhao Binsheng. Semiautomatic segmentation of liver metastases on volumetric CT images. Med Phys, 2015, 42(11): 6283-6293.
|
10. |
Xing Z, Jie T, Xiang D, et al. Interactive liver tumor segmentation from ct scans using support vector classification with watershed// International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, 2011:6005-6008.
|
11. |
Li Bingnan, Chui C K, Chang S, et al. A new unified level set method for semi-automatic liver tumor segmentation on contrast-enhanced CT images. Expert Syst Appl, 2012, 39(10): 9661-9668.
|
12. |
Amarajothi T N, Manikandan S, Muthukkutti K. Liver tumor segmentation using single level set method with shape and intensity prior. International Journal of Applied Engineering Research, 2015, 10(20): 15717-15721.
|
13. |
Cui Y, Wang X, Yu H. Level set liver tumor segmentation based on parameterized morphological gradient modification. Application Research of Computers, 2015, 7: 068.
|
14. |
Cai X D, Wu D, Su Z E, et al. Entanglement-based machine learning on a quantum computer. Phys Rev Lett, 2015, 114(11): 110504.
|
15. |
Zhou Jiayin, Huang Weimin, Xiong Wei, et al. Segmentation of hepatic tumor from abdominal CT data using an improved support vector machine framework// 2013 35th Annual International Conference Of The IEEE Engineering In Medicine & Biology Society (EMBC), Osaka, 2013: 3347-3350.
|
16. |
Li W, Jia F, Hu Q. Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. Journal of Computer & Communications, 2015, 03(11): 146-151.
|
17. |
Hoogi A, Subramaniam A, Veerapaneni R, et al. Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis. IEEE Trans Med Imaging, 2017, 36(3): 781-791.
|
18. |
Christ P F, Elshaer M E A, Ettlinger F, et al. Automatic liver and lesion segmentation in ct using cascaded fully convolutional neural networks and 3D conditional random fields // International Conference on Medical Image Computing and Computer-Assisted Intervention, Istanbul, 2016:415-423.
|
19. |
Conze P H, Noblet V, Heitz F, et al. Semi-automatic liver tumor segmentation in dynamic contrast-enhanced CT scans using random forests and supervoxels// International Workshop on Machine Learning in Medical Imaging, Munich, 2015:212-219.
|
20. |
Conze P H, Noblet V, Rousseau F, et al. Random forests on hierarchical multi-scale supervoxels for liver tumor segmentation in dynamic contrast-enhanced ct scans// 2016 IEEE 13th International Symposium On Biomedical Imaging (ISBI), Prague, 2016: 416-419.
|
21. |
宋坤. 聚类算法综述. 河南科技, 2015(22): 254.
|
22. |
Sajith A G, Hariharan S. Spatial fuzzy C-means Clustering based Segmentation on CT Images// 2015 2nd International Conference On Electronics And Communication Systems (ICECS), 2015: 414-417.
|
23. |
Obayya M, Ei R S. Automated segmentation of suspicious regions in liver CT using FCM. Int J Comput Appl, 2015, 118(6): 1-4.
|
24. |
Ben-Cohen A, Klang E, Diamant I, et al. Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations. Journal of Medical Imaging, 2015, 2(3): 034502.
|
25. |
Devi P, Dabas P. Liver tumor detection using artificial neural networks for medical images. International Journal of Innovative Research in Science & Technology, 2015, 2(3): 34-38.
|
26. |
Kadoury S, Vorontsov E, Tang An. Metastatic liver tumour segmentation from discriminant Grassmannian manifolds. Phys Med Biol, 2015, 60(16): 6459-6478.
|