1. |
World Health Organization. Global status report on road safety 2015. Geneva: World Health Organization, 2015.
|
2. |
Coronado V G, Xu L, Basavaraju S V, et al. Surveillance for traumatic brain injury-related deaths: United States, 1997-2007. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, 2011.
|
3. |
Yang Jikuang, Xu Wei, Otte D. Brain injury biomechanics in real world vehicle accident using mathematical models. Chin J Mech Eng, 2008, 21(4): 81-86.
|
4. |
曹立波, 周舟, 蒋彬辉, 等. 10 岁儿童头部有限元模型的建立及验证. 中国生物医学工程学报, 2014, 33(1): 63-70.
|
5. |
Mao Haojie, Zhang Liying, Jiang Binhui, et al. Development of a finite element human head model partially validated with thirty five experimental cases. J Biomech Eng, 2013, 135(11): 1-15.
|
6. |
李海岩, 赵玮, 阮世捷, 等. 第 95 百分位中国人头部颅脑相对位移的有限元评估. 医用生物力学, 2012, 27(2): 198-206.
|
7. |
Sahoo D, Deck C, Willinger R. Brain injury tolerance limit based on computation of axonal strain. Accident Analysis & Prevention, 2016, 92: 53-70.
|
8. |
Kleiven S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J, 2007, 51: 81-114.
|
9. |
Brands D W, Bovendeerd P H, Peters G W, et al. The large shear strain dynamic behaviour of in-vitro porcine brain tissue and a silicone gel model material. Stapp Car Crash J, 2000, 44: 249-260.
|
10. |
Bilston L E, Liu Z Z, Phan-Thien N. Large strain behaviour of brain tissue in shear: Some experimental data and differential constitutive model. Biorheology, 2001, 38(4): 335-345.
|
11. |
Chatelin S, Deck C, Willinger R. An anisotropic viscous hyperelastic constitutive law for brain material finite-element modelin. J Biorheol, 2013, 27(1): 26-37.
|
12. |
Giordano C, Kleiven S. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J Royal Soc Interf, 2014, 11(91): 20130914.
|
13. |
Wright R M, Post A, Hoshizaki B, et al. A multiscale computational approach to estimating axonal damage under inertial loading of the head. J Neurotrauma, 2013, 30(2): 102-118.
|
14. |
Weiss J A, Maker B N, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Engrg, 1996, 135(1/2): 107-128.
|
15. |
Puso M A, Weiss J A. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng, 1998, 120(1): 62-70.
|
16. |
Fung Y C. Biomechanics: mechanical properties of living tissues. 2nd ed. Springer-Verlag New York, 1993.
|
17. |
Rashid B, Destrade M, Gilchrist M D. Mechanical characterization of brain tissue in tension at dynamic strain rates. J Mech Behav Biomed Mater, 2014, 33(SI): 43-54.
|
18. |
Poles S. MOGA-II an improved multi-objective genetic algorithm. Trieste: Estecotechnical Techincal Report 6, 2003.
|
19. |
Chatelin S, Constantinesco A, Willinger R. Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations. Biorheology, 2010, 47(5/6): 255-276.
|
20. |
Rashid B, Destrade M, Gilchrist M D. Mechanical characterization of brain tissue in compression at dynamic strain rates. J Mech Behav Biomed Mater, 2012, 10(1): 23-38.
|