1. |
Guo Yanming, Liu Yu, Oerlemans A, et al. Deep learning for visual understanding: A review. Neurocomputing, 2016, 187: 27-48.
|
2. |
Hayman S. The McCulloch-Pitts model//International Joint Conference on Neural Networks. Washington, USA: IEEE, 1999: 4438-4439.
|
3. |
Lécun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
4. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks//International Conference on Neural Information Processing Systems. Lake Tahoe, USA: Curran Associates, 2012: 1097-1105.
|
5. |
Gökhan. Hazim K E. Initialization of convolutional neural networks by Gabor filters//26th Signal Processing and Communications Applications Conference (SIU), Izmir, 2018: 1-4.
|
6. |
杨格兰, 邓晓军, 刘琮. 基于深度时空域卷积神经网络的表情识别模型. 中南大学学报:自然科学版, 2016, 47(7): 2311-2319.
|
7. |
杜昌顺, 黄磊. 分段卷积神经网络在文本情感分析中的应用. 计算机工程与科学, 2017, 39(1): 173-179.
|
8. |
张力, 张洞明, 郑宏. 基于联合层特征的卷积神经网络在车标识别中的应用. 计算机应用, 2016, 36(2): 444-448.
|
9. |
王伟凝, 王励, 赵明权, 等. 基于并行深度卷积神经网络的图像美感分类. 自动化学报, 2016, 42(6): 904-914.
|
10. |
刘占文, 赵祥模, 李强, 等. 基于图模型与卷积神经网络的交通标志识别方法. 交通运输工程学报, 2016, 16(5): 122-131.
|
11. |
邬美银, 陈黎, 田菁. 基于卷积神经网络的视频图像失真检测及分类. 计算机应用研究, 2016, 33(9): 2827-2830.
|
12. |
陈耀丹, 王连明. 基于卷积神经网络的人脸识别方法. 东北师大学报:自然科学版, 2016, 48(2): 70-76.
|
13. |
刘冶, 潘炎, 夏榕楷, 等. FP-CNNH: 一种基于深度卷积神经网络的快速图像哈希算法. 计算机科学, 2016, 43(9): 39-46, 51.
|
14. |
李寰宇, 毕笃彦, 查宇飞, 等. 一种易于初始化的类卷积神经网络视觉跟踪算法. 电子与信息学报, 2016, 38(1): 1-7.
|
15. |
Guan Sheng, Chen Min, Ha H Y, et al. Deep learning with MCA-based instance selection and bootstrapping for imbalanced data classification//2015 IEEE Conference On Collaboration And Internet Computing (CIC), Hangzhou, China: IEEE, 2015: 288-295.
|
16. |
吴素雯, 战荫伟. 基于选择性搜索和卷积神经网络的人脸检测. 计算机应用研究, 2017, 34(9): 2854-2857, 2876.
|
17. |
刘万军, 梁雪剑, 曲海成. 不同池化模型的卷积神经网络学习性能研究. 中国图象图形学报, 2016, 21(9): 1178-1190.
|
18. |
Huang Zhen, Siniscalchi S M, Lee C H. A unified approach to transfer learning of deep neural networks with applications to speaker adaptation in automatic speech recognition. Neurocomputing, 2016, 218: 448-459.
|
19. |
李雯. 基于深度卷积神经网络的 CT 图像肝脏肿瘤分割方法研究. 中国科学院大学, 深圳: 中国科学院深圳先进技术研究院, 2016.
|
20. |
Shen Wei, Zhou Mu, Yang Feng, et al. Multi-scale convolutional neural networks for lung nodule classification. Inf Process Med Imaging, 2015, 24: 588-599.
|
21. |
郝占龙, 罗晓曙, 赵书林. 基于同层多尺度核 CNN 的单细胞图像分类. 计算机工程与应用, 2018, 54(15): 181-184.
|
22. |
Gao X W, Hui Rui, Tian Zengmin. Classification of CT brain images based on deep learning networks. Comput Methods Programs Biomed, 2017, 138: 49-56.
|
23. |
Mishra M, Schmitt S, Wang Lichao, et al. Structure-based assessment of cancerous mitochondria using deep networks//2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague: Czech Republic, 2016: 545-548.
|
24. |
秦志光, 陈浩, 丁熠, 等. 基于多模态卷积神经网络的脑血管提取方法研究. 电子科技大学学报, 2016, 45(4): 573-581.
|
25. |
Chen J, Qi X, Tervonen O, et al. Thorax disease diagnosis using deep convolutional neural network//38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Orlando, USA, 2016: 2287-2290.
|