1. |
Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Rob Res, 2008, 27(2): 263-273.
|
2. |
Tucker M R, Olivier J, PAGEL Anna, et al. Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil, 2015, 12(1): 1-29.
|
3. |
张腾宇, 兰陟, 樊瑜波. 智能膝关节假肢的技术发展与趋势分析. 中国康复医学杂志, 2017, 32(4): 451-453.
|
4. |
杨鹏, 刘作军, 耿艳利, 等. 智能下肢假肢关键技术研究进展. 河北工业大学学报, 2013, 42(1): 76-80.
|
5. |
Powers C M, Boyd L A, Torburn L, et al. Stair ambulation in persons with transtibial amputation: an analysis of the Seattle LightFoot. J Rehabil Res Dev, 1997, 34(1): 9-18.
|
6. |
Headon R, Curwen R. Recognizing movements from the ground reaction force, CiteSeer, 2001:1-8.
|
7. |
Jeong J, Cho W, Kim Y, et al. Recognition of lower limb muscle EMG patterns by using neural networks during the postural balance control//3rd Kuala Lumpur International Conference On Biomedical Engineering 2006, Berlin: Springer, 2007: 82-85.
|
8. |
刘磊, 杨鹏, 刘作军, 等. 采用核主成分分析和相关向量机的人体运动意图识别. 机器人, 2017, 39(5): 661-669.
|
9. |
王振平, 喻洪流, 杜妍辰, 等. 假肢智能膝关节的研究现状和发展趋势. 生物医学工程学进展, 2015, 36(3): 159-163.
|
10. |
Wang Y, Shi Y, Wei G. A novel local feature descriptor based on energy information for human activity recognition. Elsevier Science Publishers B. V, 2017: 19-28.
|
11. |
尹燕芳, 孙农亮, 刘明, 等. 基于BSCPs-RF的人体关节点行为识别与预测. 机器人, 2017, 39(6): 795-802.
|
12. |
Jiménez-Fabián R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys, 2012, 34(4): 397-408.
|
13. |
Kim S K, Hong S, Kim D. A walking motion imitation framework of a humanoid robot by human walking recognition from IMU motion data//IEEE-Ras International Conference on Humanoid Robots, IEEE, 2009:343-348.
|
14. |
张向刚, 唐海, 付常君, 等. 一种基于隐马尔科夫模型的步态识别算法. 计算机科学, 2016, 43(7): 285-289, 302.
|
15. |
Preece S J, Goulermas J Y, Kenney L P, et al. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng, 2009, 56(3): 871-879.
|
16. |
Kwapisz J R, Weiss G M, Moore S A. Activity recognition using cell phone accelerometers. Acm Sigkdd Explorati, 2011, 12(2): 74-82.
|
17. |
Abhayasinghe N, Murray I. Human activity recognition using thigh angle derived from single thigh mounted IMU data//2014 International Conference On Indoor Positioning And Indoor Navigation (IPIN), IEEE, 2014: 111-115.
|
18. |
Shi G Y, Zou Y X, Li W J, et al. Towards multi-classification of human motions using micro IMU and SVM training process. Adv Mat Res, 2009, 60-61: 189-193.
|
19. |
Dehzangi O, Taherisadr M, Changalvala R. IMU-based gait recognition using convolutional neural networks and multi-sensor fusion. Sensors (Basel), 2017, 17(12): 2735-2757.
|
20. |
Panahandeh G, Mohammadiha N, Leijon A A. Continuous hidden markov model for pedestrian activity classification and gait analysis. IEEE Trans Instrum Meas, 2013, 62(5, SI): 1073-1083.
|
21. |
You Y, Qian Y, He T, et al. An investigation on DNN-derived bottleneck features for GMM-HMM based robust speech recognition//IEEE China Summit and International Conference on Signal and Information Processing, IEEE, 2015: 30-34.
|
22. |
Oskoei M A, Hu Huosheng. Myoelectric control systems-A survey. Biomed Signal Process Control, 2007, 2(4): 275-294.
|
23. |
Zhou X, Zhou C, Stewart B G. Comparisons of discrete wavelet transform, wavelet packet transform and stationary wavelet transform in denoising PD measurement data//Conference Record of the 2006 IEEE International Symposium on Electrical Insulation, IEEE, 2006: 237-240.
|