1. |
Paul S M, Mytelka D S, Dunwiddie C T, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov, 2010, 9(3): 203-214.
|
2. |
Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research, 2014, 42(Database issue): D1091-D1097.
|
3. |
Kuhn M, Szklarczyk D, Pletscher-Frankild S A, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res, 2014, 42(D1): D401-D407.
|
4. |
Chen Xing, Liu Mingxi, Yan G Y. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst, 2012, 8(7): 1970-1978.
|
5. |
Iskar M, Zeller G, Zhao Xingming, et al. Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Current opinion in biotechnology, 2012, 23(4): 609-616.
|
6. |
Hopkins A L, Groom C R. The druggable genome. Nature reviews Drug discovery, 2002, 1: 727-730.
|
7. |
Drews J. Drug discovery: A historical perspective. Science, 2000, 287(5460): 1960-1964.
|
8. |
Overington J P, Al-Lazikani B, Hopkins A L. How many drug targets are there? Nature Reviews Drug discovery, 2006, 5: 993-996.
|
9. |
Landry Y, Gies J P. Drugs and their molecular targets: an updated overview. Fundamental & clinical pharmacology, 2008, 22(1): 1-18.
|
10. |
Zhu Ji, Zou Hui, Rosset S, et al. Multi-class AdaBoost. Stat Interface, 2009, 2(3): 349-360.
|
11. |
Campillos M, Kuhn M, Gavin A C, et al. Drug target identification using side-effect similarity. Science, 2008, 321(5886): 263-266.
|
12. |
周福家, 张宏伟, 李卫国. 分子网络多靶标筛选的粒子群数值模拟法. 计算力学学报, 2015, 32(2): 269-273.
|
13. |
Yamanishi Y, Araki M, Gutteridge A A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13): I232-I240.
|
14. |
Keiser M J, Setola V, Irwin J J, et al. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270): 175-181.
|
15. |
Cobanoglu M C, Liu Chang, Hu Feizhuo, et al. Predicting drug-target interactions using probabilistic matrix factorization. J Chem Inf Model, 2013, 53(12): 3399-3409.
|
16. |
Schapire R E. The strength of weak learnability. Mach Learn, 1990, 5(2): 197-227.
|
17. |
Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 2009, 25(18): 2397-2403.
|
18. |
Takács D, Pilászy I, Németh B. Major components of the gravity recommendation system. ACM SIGKDD Explorations Newsletter, 2007, 9(2): 80-83.
|
19. |
Wu Zhenhua, Chen Xiaosu, Xiao Daoju. Offline Chinese signature verification based on segmentation and RBFNN classifier. Acta Automatica Sinica, 2007, 345(1): 995-1001.
|
20. |
Li Dongsheng, Chen Chao, Lv Qin, et al. An algorithm for efficient privacy-preserving item-based collaborative filtering. Future Generation Computer Systems, 2016, 55(C): 311-320.
|
21. |
Bilal M, Israr H, Shahid M, et al. Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques. Journal of King Saud University-Computer and Information Sciences, 2016, 28(3): 330-344.
|
22. |
Patel T B, Patil H A. Cochlear filter and instantaneous frequency based features for spoofed speech detection. IEEE J Sel Top Signal Process, 2017, 11(4): 618-631.
|
23. |
刘晓峰, 张雪英, Wang Z J. Logistic核函数及其在语音识别中的应用. 华南理工大学学报:自然科学版, 2015, 43(5): 100-106.
|