1. |
Chen Bing, Ma Hao, Qin Laiyin, et al. Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, 2016, 5: 26-37.
|
2. |
Kim H, Shin Y J, Kim J. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics, 2017, 46: 32-45.
|
3. |
王海莲, 张小栋, 李华聪. 士兵可穿戴下肢外骨骼机器人多元感知方法研究. 计算机测量与控制, 2015, 23(10): 3505-3507.
|
4. |
Pratt J E, Krupp B T, Morse C J, et al. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking//IEEE Inter Conf Robot Auto, 2004: 2430-2435.
|
5. |
Ouyang Xiaoping, Ding Shuo, Fan Boqian, et al. Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics, 2016, 38: 68-75.
|
6. |
Hussain S, Xie Shengq, Jamwal P K. Control of a robotic orthosis for gait rehabilitation. Rob Auton Syst, 2013, 61(9): 911-919.
|
7. |
Pransky J. The Pransky interview: Russ Angold, co-founder and president of Ekso (TM) Labs. Industrial Robot-an International Journal, 2014, 41(4): 329-334.
|
8. |
Gandolla M, Guanziroli E, D’angelo A, et al. Automatic setting procedure for exoskeleton-assisted overground gait: proof of concept on stroke population. Front Neurorobot, 2018, 12: 10.
|
9. |
Wang Shiqian, Wang Letian, Meijneke C, et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 2015, 23(2): 277-286.
|
10. |
Chen Bing, Zhong Chunhao, Ma Hao, et al. Sit-to-stand and stand-to-sit assistance for paraplegic patients with CUHK-EXO exoskeleton. Robotica, 2018, 36(4): 535-551.
|
11. |
Chen Bing, Zhong Chunhao, Zhao Xuan, et al. A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic Translation, 2017, 11: 7-18.
|
12. |
谢峥, 王明江, 黄武龙, 等. 基于实时步态分析的行走辅助外骨骼机器人系统. 生物医学工程学杂志, 2017, 34(2): 265-270.
|
13. |
Meuleman J, van Asseldonk E, van Oort G, et al. LOPES II—Design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(3): 352-363.
|
14. |
Bayon C, Ramirez O, Serrano J I, et al. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Rob Auton Syst, 2017, 91: 101-114.
|
15. |
Feng Yongfei, Wang Hongbo, Du Yaxin, et al. Trajectory planning of a novel lower limb rehabilitation robot for stroke patient passive training. Advances in Mechanical Engineering, 2017, 9(12): 1-10.
|
16. |
Torrealba R R, Udelman S B, Fonseca-Rojas E D. Design of variable impedance actuator for knee joint of a portable human gait rehabilitation exoskeleton. Mechanism and Machine Theory, 2017, 116: 248-261.
|
17. |
Zhang Mingming, Cao Jinghui, Zhu Guoli, et al. Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Robot Auto Sys, 2017, 98: 213-221.
|
18. |
朱文超, 徐秀林, 姚晓明, 等. 压差式气动减重康复步行训练系统的设计. 生物医学工程学杂志, 2017, 34(4): 565-571.
|
19. |
Bortole M, Venkatakrishnan A, Zhu Fangshi, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J NeuroEng Rehabil, 2015, 12: 54.
|
20. |
Wu Junpeng, Gao Jinwu, Song Rong, et al. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics, 2016, 33: 13-22.
|
21. |
Long Yi, Du Zhijiang, Chen Chaofeng, et al. Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng, 2017, 14(2): 272-283.
|
22. |
Karavas N, Ajoudani A, Tsagarakis N, et al. Tele-impedance based assistive control for a compliant knee exoskeleton. Rob Auton Syst, 2015, 73(SI): 78-90.
|
23. |
Hyun D J, Park H, Ha Taejun, et al. Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance. Rob Auton Syst, 2017, 95: 181-195.
|
24. |
Kardan I, Akbarzadeh A. Robust output feedback assistive control of a compliantly actuated knee exoskeleton. Rob Auton Syst, 2017, 98: 15-29.
|
25. |
韩亚丽, 吴振宇, 许有熊, 等. 基于多模式弹性驱动器的膝关节外骨骼机械腿. 机器人, 2017, 39(4): 498-504.
|
26. |
Yu H Y, Huang S, Chen G, et al. Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans Robot, 2015, 31(5): 1089-1100.
|
27. |
Cestari M, Sanz-Merodio D, Arevalo J C. An adjustable compliant joint for lower-limb exoskeletons. IEEE-ASME Transactions on Mechatronics, 2015, 20(2): 889-898.
|
28. |
赵彦峻, 葛文庆, 刘小龙, 等. 外骨骼机器人设计及其机械结构的有限元分析. 机床与液压, 2016, 44(3): 10-13, 51.
|
29. |
Chen Shan, Chen Zheng, Yao Bin, et al. Cascade force control of lower limb hydraulic exoskeleton for human performance augmentation//Proceedings of the Iecon 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 2016: 512-517.
|
30. |
Strausser K A, Swift T A, Zoss A B, et al. Prototype medical exoskeleton for paraplegic mobility: first experimental results// Proceedings of the ASME Dynamic Systems and Control Conference, 2010: 453-458.
|
31. |
何健, 王海波, 李雪峰, 等. 负重型下肢外骨骼液压动力单元的研究. 液压与气动, 2017, (11): 6-11.
|
32. |
靳兴来, 朱世强, 张学群, 等. 液压驱动下肢助力外骨骼机器人膝关节结构设计及试验. 农业工程学报, 2017, 33(5): 26-31.
|
33. |
唐志勇, 徐晓东, 熊珏, 等. 下肢液压驱动康复机器人机械设计与运动学研究. 液压与气动, 2014, (12): 31-35.
|
34. |
Lu Zhiguo, Huo Jun, Wang Yuce, et al. Design and simulation analysis of a lower limbs exoskeleton powered by hydraulic drive// 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), 2017: 173-177.
|
35. |
Yamamoto K, Hyodo K, Ishii M, et al. Development of power assisting suit for assisting nurse labor. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2002, 45(3): 703-711.
|
36. |
李超. 气动肌肉驱动的外骨骼助力系统研究. 杭州: 浙江大学, 2016.
|
37. |
Hashimoto Y, Nakanishi Y, Saga N, et al. Development of gait assistive device using pneumatic artificial muscle//IEEE 2016 Joint 8th Inter Conf Soft Comput Intell Sys, 2016: 710-713.
|
38. |
滕燕, 杨罡, 王士允, 等. 多模式柔顺膝关节康复器设计及力分析. 机械制造与自动化, 2012, 41(2): 143-146.
|
39. |
Hong Y P, Koo D, Park J I, et al. The SoftGait: A simple and powerful Weight-Support device for walking and squatting//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 6336-6341.
|
40. |
Wan Shilong, Yang Mingxing, Xi Ruru, et al. Design and control strategy of humanoid lower limb exoskeleton driven by pneumatic artificial muscles//Proceedings of 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2016: 157-161.
|
41. |
Quy-Thinh D, Yamamoto S I. Tracking control of a robotic orthosis for gait rehabilitation: a feedforward-feedback control approach//2017 10th Biomedical Engineering International Conference (BMEICON), Japan: IEEE, 2017: 1-5.
|
42. |
Sarkar A, Dutta A. 8-DoF biped robot with compliant-links. Rob Auton Syst, 2015, 63(1): 57-67.
|
43. |
Wang Donghai, Lee K M, Ji Jingjing. A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Transactions on Robotics, 2016, 32(4): 933-942.
|