1. |
Jain S, Sima D M, Ribbens A, et al. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Neuroimage Clin, 2015, 8: 367-375.
|
2. |
Yoo B I, Lee J J, Han J W, et al. Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images. Neuroradiology, 2014, 56(4): 265-281.
|
3. |
Cabezas M, Oliver A, Roura E, et al. Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding. Comput Methods Prog Biomed, 2014, 115(3): 147-161.
|
4. |
Ganiler O, Oliver A, Diez Y, et al. A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies. Neuroradiology, 2014, 56(5): 363-374.
|
5. |
Guo Wei, Li Qiang. Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT. Med Phys, 2014, 41(9): 1-8.
|
6. |
Garcia-Lorenzo D, Francis S, Narayanan S A, et al. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal, 2013, 17(1): 1-18.
|
7. |
Li, Chunming, Gore J C, Davatzikos C. Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magnetic Resonance Imaging, 2014, 32(7): 913-923.
|
8. |
Li Chunming, Xu Chenyang, Gui Changfeng, et al. Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process, 2010, 19(12): 3243-3254.
|
9. |
Li Chunming, Huang Rui, Ding Zhaohua, et al. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity// 11th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New Youk: Springer Berlin Heidelberg, 2008, 11(Pt 2): 1083-1091.
|
10. |
Zhao Yue, Guo Shuxu, Luo Min, et al. An energy minimization method for MS lesion segmentation from T1-w and FLAIR images. Magn Reson Imaging, 2017, 39: 1-6.
|
11. |
Roy S, Bhattacharyya D, Bandyopadhyay S K, et al. An effective method for computerized prediction and segmentation of multiple sclerosis lesions in brain MRI. Comput Methods Programs Biomed, 2017, 140: 307-320.
|
12. |
Valverde S, Cabezas M, Roura E, et al. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage, 2017, 155: 159-168.
|
13. |
Guizard N, Coupé P, Fonov V S, et al. Rotation-invariant multi-contrast non-local means for MS lesion segmentation. NeuroImage: Clinical, 2015, 8: 376-389.
|
14. |
Filho A C. A hybrid approach based on logistic classification and iterative contrast enhancement algorithm for hyperintense multiple sclerosis lesion segmentation. Med Biol Eng Comput, 2018, 56: 1063-1076.
|
15. |
Doshi J, Erus G, Ou Yangming, et al. Multi-atlas skull stripping. Academic Radiology, 2013, 20(12): 1566-1576.
|
16. |
Cai Weiling, Chen Songcan, Zhang Daoqiang. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 2007, 40(3): 825-838.
|
17. |
Gong Zhaoxuan, Lu Zhentai, Zhao Dazhe, et al. Level set framework of multi-atlas label fusion with applications to magnetic resonance imaging segmentation of brain region of interests and cardiac left ventricles. Digit Med, 2017, 3(2): 76-85.
|
18. |
Zhao Yue, Guo Shuxu, Luo Min, et al. A level set method for multiple sclerosis lesion segmentation. Magn Reson Imaging, 2018, 49: 94-100.
|
19. |
Gong Zhaoxuan, Zhao Dazhe, Li Chunming, et al. A robust energy minimization algorithm for MS-lesion segmentation// 11th International Symposium on Visual Computing (ISVC), Las Vegas, 2015, 9474: 521-530.
|