1. |
Wostyn P, De Groot V, Van dam D, et al. The glymphatic hypothesis of glaucoma: A unifying concept incorporating vascular, biomechanical, and biochemical aspects of the disease. BioMed Research International, 2017: 5123148-1-5123148-7.
|
2. |
Guy A, Wiggs J L, Turalba A, et al. Translating the low translaminar cribrosa pressure gradient hypothesis into the clinical care of glaucoma. Seminars in Ophthalmology, 2016, 31(1-2): 131-139.
|
3. |
Kass M, Heuer D K, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol, 2002, 120(6): 701-713.
|
4. |
陈燕云, 梁远波, 乔利亚. 正常眼压性青光眼病因学相关因素与分型. 眼科, 2012, 21(1): 19-23.
|
5. |
Tham Y C, Wong T Y, Quigley H A, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 2014, 121(11): 2081-2090.
|
6. |
Marek B, Harris A, Kanakamedala P, et al. Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure. Br J Ophthalmol, 2014, 98(6): 721-725.
|
7. |
Liu Hanruo, Yang Diya, Ma Teng, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol, 2018, 186: 128-137.
|
8. |
Leske M C, Wu S Y, Hennis A, et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology, 2008, 115(1): 85-93.
|
9. |
Fan N, Wang P, Tang L, et al. Ocular blood flow and normal tension glaucoma. BioMed Research International, 2015: 308505. DOI: 10.1155/2015/308505.
|
10. |
Samsudin A, Isaacs N, Tai M L S, et al. Ocular perfusion pressure and ophthalmic artery flow in patients with normal tension glaucoma. BMC Ophthalmol, 2016, 16: 39. DOI: 10.1186/s12886-016-0215-3.
|
11. |
Hou R, Zhang Z, Yang D, et al. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Brain Research, 2016, 1635: 201-208.
|
12. |
Yavin D, Luu J, James M T, et al. Diagnostic accuracy of intraocular pressure measurement for the detection of raised intracranial pressure: meta-analysis. J Neurosurg, 2014, 121(3): 680-687.
|
13. |
吴文文, 唐莉. 低颅压与正常眼压性青光眼的关系. 眼科新进展, 2015, 35(4): 390-392.
|
14. |
Lindén C, Qvarlander S, Jóhannesson G, et al. Normal-tension glaucoma has normal intracranial pressure a prospective study of intracranial pressure and intraocular pressure in different body positions. Ophthalmology, 2018, 125(3): 361-368.
|
15. |
Downs J C, Girkin C A. Lamina cribrosa in glaucoma. Curr Opin Ophthalmol, 2017, 28(2): 113-119.
|
16. |
梁庆丰, 刘旭阳. 北京眼压与颅压相关疾病研究中跨筛板压力差致青光眼视神经损伤的机制. 中华眼科杂志, 2014, 50(10): 798-800.
|
17. |
Ren Ruojin, Jonas J B, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology, 2010, 117(2): 259-266.
|
18. |
Wang W, Wang M, Li Z, et al. The intraocular pressure could not be used to determine the intracranial pressure in patients with hydrocephalus. Int J Neurosci, 2018, 8: 1-19.
|
19. |
Lee S H, Kwak S W, Kang E M, et al. Estimated trans-lamina cribrosa pressure differences in low-teen and high-teen intraocular pressure normal tension glaucoma: the korean National Health and Nutrition Examination Survey. PLoS One, 2016, 11(2): e0148412.
|
20. |
Chen B H, Drucker M D, Louis K M. Progression of normal-tension glaucoma after ventriculoperitoneal shunt to decrease cerebrospinal fluid pressure. J Glaucoma, 2016, 25(1): E50-E52.
|
21. |
Gallina P, Savastano A, Becattini E, et al. Glaucoma in patients with shunt-treated normal pressure hydrocephalus. J Neurosurg, 2018, 129(4): 1078-1084.
|
22. |
Feola A J, Myers J G, Raykin J, et al. Finite element modeling of factors influencing optic nerve head deformation due to intracranial pressure. Invest Ophthalmol Vis Sci, 2016, 57(4): 1901-1911.
|
23. |
Yablonski M, Ritch R, Pokorny K S. Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci, 1979, 18(Suppl): 165.
|
24. |
Wang Bo, Tran H, Smith M A, et al. In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure. PLoS One, 2017, 12(11): e0188302.
|
25. |
侯若武, 章征, 杨迪亚, 等. 颅内压与眼内压的相关性及对视神经的影响: 北京颅眼压力研究 (iCOP). 中国科学: 生命科学, 2016, 46: 1413-1422.
|
26. |
Yang Diya, Fu Jidi, Hou Ruowu, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci, 2014, 55(5): 3067-3073.
|
27. |
Tran H, Grimma J, Wanga B, et al. Mapping in-vivo optic nerve head strains caused by intraocular and intracranial pressures. Proc SPIE Int Soc Opt Eng, 2017: 10067. DOI: 10.1117/12.2257360.
|
28. |
Gonzálezcamarena P I, Sanjuan D, Gonzálezolhovich I, et al. Dynamic changes of the intraocular pressure and the pressure of cerebrospinal fluid in nonglaucomatous neurological patients. Acta Ophthalmologica, 2017, 95(2): e138-e143.
|
29. |
Zhao Da, He Zheng, Vingrys A J, et al. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep, 2015, 3(8): e12507.
|
30. |
Abe R Y, Diniz-Filho A, Costa V P, et al. Predicting vision-related disability in glaucoma. Ophthalmology, 2018, 125(1): 22-30.
|
31. |
Rajandran N. Glaucoma detection using DWT based energy features and ANN classifier. IOSR Journal of Computer Engineering, 2014, 16(5): 35-42.
|
32. |
Choudhary K, Tiwari S. ANN glaucoma detection using cup-to-disk ratio and neuroretinal rim. Int J Comput Appl, 2015, 111(11): 8-14.
|