1. |
Shan S Y, Yan W, Guo X Q, et al. Unsupervised end-to-end learning for deformable medical image registration, arXiv.org e-Print Archive, 2018. https://arxiv.org/abs/1711.08608v2.
|
2. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks//25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 2012: 1097-1105.
|
3. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation //IEEE Conference on Computer Vision and Pattern Recognition, Boston: IEEE Computer Society, 2015: 3431-3440.
|
4. |
Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks//Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal: MIT Press, 2015: 91-99.
|
5. |
Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis. Med Image Anal, 2017, 42(9): 60-88.
|
6. |
Lee J G, Jun S, Cho Y W, et al. Deep learning in medical imaging: general overview. Korean Journal of Radiology, 2017, 18(4): 570-584.
|
7. |
Shen D, Wu G, Suk H I. Deep learning in medical image analysis. Annu Rev Biomed Eng, 2017, 19(1): 221-248.
|
8. |
Greenspan H, Ginneken B V, Summers R M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging, 2016, 35(5): 1153-1159.
|
9. |
刘飞, 张俊然, 杨豪. 基于深度学习的医学图像识别研究进展. 中国生物医学工程学报, 2018, (1): 86-94.
|
10. |
李渊, 骆志刚, 管乃洋, 等. 生物医学数据分析中的深度学习方法应用. 生物化学与生物物理进展, 2016, (5): 472-483.
|
11. |
田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战. 自动化学报, 2018, 44(3): 401-424.
|
12. |
Alam F, Rahman S U, Ullah S, et al. Medical image registration in image guided surgery: issues, challenges and research opportunities. Biocybernetics and Biomedical Engineering, 2018, 38(1): 71-89.
|
13. |
Esteva A, Kuprel B, Novoa R A, et al. Corrigendum: dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 546: 686.
|
14. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
|
15. |
Fan J, Cao X, Yap P T, et al. BIRNet: brain image registration using dual-supervised fully convolutional networks, arXiv.org e-Print Archive, 2018. https://arxiv.org/abs/1802.04692.
|
16. |
Cao X H, Yang J H, Zhang J, et al. Deformable image registration based on similarity-steered CNN regression// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017). Quebec: Springer, Cham, 2017: 300-308.
|
17. |
Chen F, Wu D, Liao H G. Registration of CT and ultrasound images of the spine with neural network and orientation code mutual information//International Conference on Medical Imaging and Virtual Reality, 2016: 292-301.
|
18. |
Cheng X, Zhang L, Zheng Y F. Deep similarity learning for multimodal medical images. Comput Method Biomech Biomed Eng: Imaging Vis, 2018, 6(3): 248-252.
|
19. |
Sokooti H, Vos B D, Berendsen F, et al. Nonrigid image registration using multi-scale 3D convolutional neural networks//International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017). Quebec: Springer, Cham, 2017: 232-239.
|
20. |
Eppenhof K A J, Pluim J P W. Supervised local error estimation for nonlinear image registration using convolutional neural networks//Society of Photo-Optical Instrumentation Engineers (SPIE). San Diego: SPIE Conference Series, 2017: 10133.
|
21. |
Simonovsky M, Gutiérrez-Becker B, Mateus D, et al. A deep metric for multimodal registration//Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016). Athens: Springer International Publishing, 2016: 10-18.
|
22. |
Liao R, Miao S, Tournemire P D, et al. An artificial agent for robust image registration// Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: eprint arXiv: 1611.10336, 2016.
|
23. |
Miao Shun, Wang Z J, Liao Rui. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging, 2016, 35(5): 1352-1363.
|
24. |
Yang Xiao, Kwitt R, Styner M, et al. Quicksilver: fast predictive image registration - a deep learning approach. Neuroimage, 2017, 158: 378-396.
|
25. |
Zheng Jiannan, Miao Shun, Wang Z J, et al. Pairwise domain adaptation module for CNN-based 2-D/3-D registration. Journal of Medical Imaging, 2018, 5(2): 021204.
|
26. |
Uzunova H, Wilms M, Handels H, et al. Training CNNs for image registration from few samples with model-based data augmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017). Quebec: Springer, Cham, 2017: 223-231.
|
27. |
Wu Guorong, Kim M, Wang Qian, et al. Unsupervised deep feature learning for deformable registration of Mr brain images//Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), 2013: 649-656.
|
28. |
Marc-Michel Rohé, Datar M, Heimann T, et al. SVF-net: learning deformable image registration using shape matching//International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017). Quebec: Springer, Cham, 2017: 266-274.
|
29. |
Li H M, Fan Y. Non-rigid image registration using fully convolutional networks with deep self-supervision, arXiv.org e-Print Archive, 2017. https://arxiv.org/abs/1709.00799.
|
30. |
Chen Z T, Fu Y W, Zhang Y D, et al. Semantic feature augmentation in few-shot learning, arXiv.org e-Print Archive, 2018. https://arxiv.org/abs/1804.05298v3.
|
31. |
Wang Yuxiong, Hebert M. Learning to learn: model regression networks for easy small sample learning// European Conference on Computer Vision (ECCV 2016), Amsterdam: Springer International Publishing, 2016: 616-634.
|
32. |
Li Zhizhong, Hoiem D. Learning without forgetting// European Conference on Computer Vision (ECCV 2016), Amsterdam: Springer International Publishing, 2016: 614-629.
|
33. |
Fu Yanwei, Sigal L. Semi-supervised vocabulary-informed learning//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 5337-5346.
|
34. |
Zhu Junyan, Park T, Isola P, et al. Unpaired Image-to-Image translation using cycle-consistent adversarial networks//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2242-2251.
|
35. |
Mao Xudong, Li Qing, Xie Haoran, et al. Least squares generative adversarial networks//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2813-2821.
|
36. |
Durugkar I, Gemp I, Mahadevan S. Generative Multi-Adversarial Networks// 5th International Conference on Learning Representations (ICLR). Toulon, 2017.
|
37. |
Dixit M, Kwitt R, Niethammer M, et al. AGA: attribute-guided augmentation//30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu: IEEE Computer Society, 2017: 3328-3336.
|
38. |
Zou Maoyang, Zhong Yong. Transfer learning for classification of optical satellite image. Sensing and Imaging, 2018, 19(1): 6-19.
|
39. |
Shin H C, Roth H R, Gao Mingchen, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298.
|
40. |
Jaderberg M, Simonyan K, Zisserman A, et al. Spatial transformer networks, arXiv.org e-Print Archive, 2015. https://arxiv.org/abs/1506.02025.
|
41. |
de Vos B D, Berendsen F F, Viergever M A, et al. End-to-end unsupervised deformable image registration with a convolutional neural network// International Workshop on Deep Learning in Medical Image Analysis (DLMIA 2017, ML-CDS 2017). Springer, Cham. 2017, 10553: 204-212.
|
42. |
Balakrishnan G, Zhao A, Sabuncu M R, et al. An unsupervised learning model for deformable medical image registration, arXiv.org e-Print Archive, 2018. https://arxiv.org/abs/1802.02604.
|