1. |
Ramadan R A, Vasilakos A V. Brain computer interface: control signals review. Neurocomputing, 2017, 223: 26-44.
|
2. |
Chaudhary U, Xia Bin, Silvoni S, et al. Brain-computer interface-based communication in the completely locked-in state. PLoS Biol, 2017, 15(1): e1002593.
|
3. |
Chowdhury A, Shankaran R, Kavakli M, et al. Sensor applications and physiological features in drivers' drowsiness detection: a review. IEEE Sens J, 2018, 18(8): 3055-3067.
|
4. |
Munyon C N. Neuroethics of non-primary brain computer interface: focus on potential military applications. Front Neurosci, 2018, 12: 696.
|
5. |
Ge Sheng, Ding Mengyuan, Zhang Zheng, et al. Temporal-spatial features of intention understanding based on EEG-fNIRS bimodal measurement. IEEE Access, 2017, 5: 14245-14258.
|
6. |
Zhang Li, Gan J Q, Wang Haixian. Localization of neural efficiency of the mathematically gifted brain through a feature subset selection method. Cogn Neurodyn, 2015, 9(5): 495-508.
|
7. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005.
|
8. |
Wu Chaohua, Lin Ke, Wu Wei, et al. A novel algorithm for learning sparse spatio-spectral patterns for event-related potentials. IEEE Trans Neural Netw Learn Syst, 2017, 28(4): 862-872.
|
9. |
Zhang Yu, Zhou Guoxu, Jin Jing, et al. L1-Regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(6): 887-896.
|
10. |
Nakanishi M, Wang Yijun, Wang Yute, et al. A high-speed brain speller using steady-state visual evoked potentials. Int J Neural Syst, 2014, 24(6): 1450019.
|
11. |
Chen Xiaogang, Wang Yijun, Gao Shangkai, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng, 2015, 12(4): 046008.
|
12. |
Wang Haixian, Li Xiaomeng. Regularized filters for L1-Norm-Based common spatial patterns. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(2): 201-211.
|
13. |
Hatamikia S, Nasrabadi A M. Subject transfer BCI based on composite local temporal correlation common spatial pattern. Comput Biol Med, 2015, 64: 1-11.
|
14. |
Lotte F, Guan Cuntai. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng, 2011, 58(2): 355-362.
|
15. |
Tahernezhad-Javazm F, Azimirad V, Shoaran M. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems. J Neural Eng, 2018, 15(2): 021007.
|
16. |
Quitadamo L R, Cavrini F, Sbernini L, et al. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review. J Neural Eng, 2017, 14(1): 011001.
|
17. |
Zhang Yu, Zhou Guoxu, Jin Jing, et al. Sparse bayesian classification of EEG for brain-computer interface. IEEE Trans Neural Netw Learn Syst, 2016, 27(11): 2256-2267.
|
18. |
Jiang Jing, Yin Erwei, Wang Chunhui, et al. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs. J Neural Eng, 2018, 15(4): 046025.
|
19. |
Idaji M J, Shamsollahi M B, Sardouie S H. Higher order spectral regression discriminant analysis (HOSRDA): a tensor feature reduction method for ERP detection. Pattern Recognit, 2017, 70: 152-162.
|
20. |
Nakanishi M, Wang Yijun, Chen Xiaogang, et al. Enhancing detection of SSVEPs for a High-Speed brain speller using task-related component analysis. IEEE Trans Biomed Eng, 2018, 65(1): 104-112.
|
21. |
Xu Minpeng, Xiao Xiaolin, Wang Yijun, et al. A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng, 2018, 65(5): 1166-1175.
|
22. |
Ilea I, Bombrun L, Said S, et al. Fisher vector coding for covariance matrix descriptors based on the log-euclidean and affine invariant riemannian metrics. Journal Of Imaging, 2018, 4(7): 85.
|
23. |
Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces, 2017, 4(3): 155-174.
|
24. |
Yger F, Berar M, Lotte F. Riemannian approaches in brain-computer interfaces: a review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(10): 1753-1762.
|
25. |
Waytowich N R, Lawhern V J, Bohannon A W, et al. Spectral transfer learning using information geometry for a user-independent brain-computer interface. Front Neurosci, 2016, 10: 430.
|
26. |
Nguyen C H, Artemiadis P. EEG feature descriptors and discriminant analysis under riemannian manifold perspective. Neurocomputing, 2018, 275: 1871-1883.
|
27. |
Kalunga E K, Chevallier S, Barthelemy Q A, et al. Online SSVEP-based BCI using riemannian geometry. Neurocomputing, 2016, 191: 55-68.
|
28. |
Cao Chensi, Liu Feng, Tan Hai, et al. Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics, 2018, 16(1): 17-32.
|
29. |
Movahedi F, Coyle J L, Sejdic E. Deep belief networks for electroencephalography: a review of recent contributions and future outlooks. IEEE J Biomed Health Inform, 2018, 22(3): 642-652.
|
30. |
Schirrmeister R T, Springenberg J T, Fiederer L D, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 2017, 38(11): 5391-5420.
|
31. |
Tabar Y R, Halici U. A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng, 2017, 14(1): 016003.
|
32. |
Ma Teng, Li Hui, Yang Hao, et al. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing. J Neurosci Methods, 2017, 275: 80-92.
|