1. |
Siegel R L, Miller K D, Jemal A. Cancer statistics. CA: A Cancer Journal for Clinicians, 2015, 65: 5-29.
|
2. |
Hu Baotian, Lu Zhengdong, Li Hang, et al. Convolutional neural network architectures for matching natural language sentences. Advances in neural information processing systems 3, 2015. arXiv: 1503.03244.
|
3. |
Armato I S, Roberts R Y, Mcnitt-Gray M F, et al. The lung image database consortium (LIDC): ensuring the integrity of expert-defined " truth”. Acad Radiol, 2007, 14(12): 1455-1463.
|
4. |
Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol, 2017, 10(3): 257-273.
|
5. |
Anirudhi R, Thiagarajan J J, Bremer T, et al. Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data//Medical Imaging 2016: Computer-Aided Diagnosis, San Diego, 2016, 9785: 978532.
|
6. |
Liu Jikui, Jiang Hongyang, Gao Mengdi, et al. An assisted diagnosis system for detection of early pulmonary nodule in computed tomography images. J Med Syst, 2017, 41(2): 1-9.
|
7. |
Shen Wei, Zhou Mu, Yang Feng, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit, 2017, 61: 663-673.
|
8. |
Kumar D, Wong A, Clausi D A. Lung nodule classification using deep features in CT images//2015 12th Conference on Computer and Robot Vision (Crv 2015), 2015: 133-138.
|
9. |
Hua K L, Hsu C H, Hidayati H C, et al. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther, 2015, 8: 2015-2022.
|
10. |
Srivastava N, Hinton G, Krizhevsky A A, et al. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
11. |
Setio A A, Traverso A, de Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal, 2017, 42: 1-13.
|
12. |
孙少燕. 基于像素灰度的医学图像刚性配准方法研究. 大连: 大连理工大学, 2007.
|
13. |
Lumsden A B, Heyman E R. Prospective randomized study evaluating an absorbable cyanoacrylate for use in vascular reconstructions. J Vasc Surg, 2006, 44(5): 1002-1009.
|
14. |
Choi W J, Choi T S. Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Information Sciences, 2012, 212(2): 57-78.
|
15. |
Bishop C. Training with noise is equivalent to Tikhonov regularization. Neural Comput, 1995, 7(1): 108-116.
|
16. |
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25(NIPS 2012), Curran Associates Inc. 2012: 1097-1105.
|
17. |
Wang Shuo, Zhou Mu, Liu Zaiyi, et al. Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal, 2017, 40: 172-183.
|
18. |
Dou Qi, Chen Hao, Yu Lequan, et al. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng, 2017, 64(7): 1558-1567.
|
19. |
李飞腾. 卷积神经网络及其应用. 大连: 大连理工大学, 2014: 20-25.
|
20. |
Murphy K, van Ginneken B, Schilham A, et al. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal, 2009, 13(5): 757-770.
|
21. |
吕晓琪, 吴凉, 谷宇, 等. 基于三维卷积神经网络的低剂量 CT 肺结节检测. 光学精密工程, 2018, 26(5): 1211-1218.
|
22. |
金奇樑. 基于CT图像的肺结节自动识别系统研究. 杭州: 浙江大学, 2016: 40-50.
|
23. |
Dandil E, Çakiroğlu M, Ekşi Z, et al. Artificial neural network-based classification system for lung nodules on computed tomography scans//2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), IEEE, 2014: 382-386.
|