1. |
Xu Huiyun, Duan Jing, Ren Li, et al. Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells. J Bone Miner Metab, 2018, 36(5): 529-536.
|
2. |
Swift J, Ivanovska I L, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science, 2013, 341(6149): 1240104.
|
3. |
Ivanovska I L, Shin J W, Swift J, et al. Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol, 2015, 25(9): 523-532.
|
4. |
Wittkowske C, Reilly G C, Lacroix D, et al. In vitro bone cell models: impact of fluid shear stress on bone formation. Front Bioeng Biotechnol, 2016, 4: 87.
|
5. |
Lambers F M, Kuhn G, Weigt C, et al. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. J Biomech, 2015, 48(6): 1179-1187.
|
6. |
Chen Guobao, Dong Chanjuan, Yang Li, et al. 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces, 2015, 7(29): 15790-15802.
|
7. |
Chen G, Xu R, Zhang C, et al. Responses of MSCs to 3D scaffold matrix mechanical properties under oscillatory perfusion culture. ACS Appl Mater Interfaces, 2017, 9(2): 1207-1218.
|
8. |
Li Zhaohui, Cui Zhanfeng. Three-dimensional perfused cell culture. Biotechnol Adv, 2014, 32(2): 243-254.
|
9. |
Raimondi M T, Boschetti F, Falcone L, et al. The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches. Biorheology, 2004, 41(3-4): 401-410.
|
10. |
Cartmell S H, Porter B D, Garcia A J, et al. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng, 2003, 9(6): 1197-1203.
|
11. |
Kim D H, Heo S J, Kim S H, et al. Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol Lett, 2011, 33(12): 2351-2359.
|
12. |
Lu Juan, Fan Yijuan, Gong Xiaoyuan, et al. The lineage specification of mesenchymal stem cells is directed by the rate of fluid shear stress. J Cell Physiol, 2016, 231(8): 1752-1760.
|
13. |
Contois D E. Kinetics of bacterial growth - relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol, 1959, 21(1): 40-50.
|
14. |
Galban C J, Locke B R. Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotechnol Bioeng, 1999, 65(2): 121-132.
|
15. |
Liu Dan, Chua C K, Leong K F. A mathematical model for fluid shear-sensitive 3D tissue construct development. Biomech Model Mechanobiol, 2013, 12(1): 19-31.
|
16. |
Gemmiti C V, Guldberg R E. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Tissue Eng, 2006, 12(3): 469-479.
|
17. |
Li Deqiang, Tang Tingting, Lu Jianxi, et al. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng Part A, 2009, 15(10): 2773-2783.
|
18. |
McCoy R J, O'Brien F J. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng Part B Rev, 2010, 16(6): 587-601.
|
19. |
Danielyan L, Schaefer R, von Ameln-Mayerhofer A, et al. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res, 2011, 14(1): 3-16.
|
20. |
朱亚召, 王明丽, 俞海洋, 等. 表达重组猪α干扰素的大肠埃希工程菌分批发酵动力学模型的建立. 中国兽药杂志, 2018, 52(09): 9-15.
|
21. |
王龙, 秦鹏, 郭瑞, 等. 甘肃甘南野生羊肚菌液体发酵生长动力学研究. 中国酿造, 2017, 36(6): 99-102.
|
22. |
Riddle R C, Taylor A F, Genetos D C, et al. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol, 2006, 290(3): C776-C784.
|
23. |
Luo Wei, Xiong Wei, Zhou Jun, et al. Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai), 2011, 43(3): 210-216.
|
24. |
Du Dajiang, Asaoka T, Ushida T, et al. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication, 2014, 6(4): 045002.
|
25. |
Sikavitsas V I, Bancroft G N, Holtorf H L, et al. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci U S A, 2003, 100(25): 14683-14688.
|
26. |
Xing Min, Wang Xiaoya, Wang Endian, et al. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Acta Biomater, 2018, 72: 381-395.
|
27. |
Du D, Furukawa K S, Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol Bioeng, 2009, 102(6): 1670-1678.
|