1. |
Huang Yuan, Jiang Donghai, Sui Meihua, et al. Fulvestrant reverses doxorubicin resistance in multidrug-resistant breast cell lines Independent of estrogen receptor expression. Oncol Rep, 2017, 37(2): 705-712.
|
2. |
Tooker P, Yen W C, Ng S C, et al. Bexarotene (LGD1069, targretin), a selective retinoid X receptor agonist, prevents and reverses gemcitabine resistance in NSCLC cells by modulating gene amplification. Cancer Res, 2007, 67(9): 4425-4433.
|
3. |
Al-Lazikani B, BANERJI Udai, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol, 2012, 30(7): 679-692.
|
4. |
Ferreira D, Adega F, Chaves R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing//López-Camarillo C, Aréchaga-Ocampo E. Oncogenomics and cancer proteomics-novel approaches in biomarkers discovery and therapeutic targets in cancer. Rijeka: InTech, 2013: 139-166.
|
5. |
Jürgen B. Integration of virtual and high-throughput screening. Nat Rev Drug Discov, 2002, 1(11): 882-894.
|
6. |
Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev, 2006, 58(3): 621-681.
|
7. |
He L, Kulesskiy E, Saarela J, et al. Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol, 2018, 1711: 351-398.
|
8. |
Morris M, Clarke D, Osimiri L, et al. Systematic analysis of quantitative logic model ensembles predicts drug combination effects on cell signaling networks. CPT Pharmacometrics Syst Pharmacol, 2016, 5(10): 544-553.
|
9. |
Bulusu K C, Guha R, Mason D J, et al. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov Today, 2016, 21(2): 225-238.
|
10. |
Aliper A, Plis S, Artemov A, et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm, 2016, 13(7): 2524-2530.
|
11. |
Chang Y, Park H, Yang H J, et al. Cancer drug response profile scan (CDRscan): A deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep, 2018, 8(1): 8857.
|
12. |
Feng Q, Dueva E, Cherkasov A, et al. Padme: A deep learning-based framework for drug-target interaction prediction. arXiv preprint arXiv: 2018: 1807.09741.
|
13. |
Zong N, Wong R S N, Ngo V. Tripartite network-based repurposing method using deep learning to compute similarities for drug-target prediction. Methods Mol Biol, 2019, 1903: 317-328.
|
14. |
Preuer K, Lewis R P I, Hochreiter S, et al. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics, 2018, 34(9): 1538-1546.
|
15. |
Hochreiter S, Clevert D A, Obermayer K. A new summarization method for Affymetrix probe level data. Bioinformatics, 2006, 22(8): 943-949.
|
16. |
O'neil J, Benita Y, Feldman I, et al. An unbiased oncology compound screen to identify novel combination strategies. Mol Cancer Ther, 2016, 15(6): 1155-1162.
|
17. |
Di Veroli G Y, Fornari C, Wang D, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 2016, 32(18): 2866-2868.
|
18. |
Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung, 1953, 3(6): 285-290.
|
19. |
Iorio F, Knijnenburg T A, Vis D J, et al. A landscape of pharmacogenomic interactions in cancer. Cell, 2016, 166(3): 740-754.
|
20. |
Mauri A. alvaDesc: A tool to calculate and analyze molecular descriptors and fingerprints//Roy K. Ecotoxicological QSARs. Methods in pharmacology and toxicology. New York: Humana, 2020: 801-820.
|