1. |
International Diabetes Federation. IDF diabetes atlas, 9th edition. Brussels: International Diabetes Federation, 2019.
|
2. |
Vashist S K. Non-invasive glucose monitoring technology in diabetes management: A review. Analytica Chimica Acta, 2012, 750: 16-27.
|
3. |
方旭超, 张培茗, 饶兰, 等. 连续血糖检测技术研究进展. 传感器与微系统, 2019, 38(8): 1-4.
|
4. |
International Diabetes Federation Guideline Development Group. Global guideline for type 2 diabetes-diabetes research and clinical practice. DiabetesRes Clin Pract, 2014, 1(104): 1-52.
|
5. |
Maruo K, Tsurugi M, Tamura M. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy. Appl Spectrosc, 2003, 57(10): 1236-1244.
|
6. |
Caduff A, Dewarrat F, Talary M, et al. Non-invasive glucose monitoring in patients with diabetes: a novel system based on impedance spectroscopy. Biosens Bioelectron, 2006, 22(5): 598-604.
|
7. |
Kim Y J, Hahn S, Yoon G. Determination of glucose in whole blood samples by mid-infrared spectroscopy. Appl Opt, 2003, 42(4): 745-749.
|
8. |
Enejder A M K, Scecina T G, Oh J, et al. Raman spectroscopy for noninvasive glucose measurements. J Biomed Opt, 2005, 10(3): 1111-1114.
|
9. |
Lan Y T, Kuang Y P, Zhou L P, et al. Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Phys Lett, 2017, 14(3): 35603.
|
10. |
Khalil O S. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabet Technol Therapeut, 2004, 6(5): 660-697.
|
11. |
Mazarevica G, Freivalds T, Jurka A. Properties of erythrocyte light refraction in diabetic patients. J Biomed Opt, 2002, 7(2): 244.
|
12. |
Nikawa Y, Someya D, Yamamoto M. Non-invasive measurement of blood sugar level by millimeter waves// IEEE MTT-S International Microwave Symposium. Phoenix: IEEE, 2000: 171-174.
|
13. |
Nikawa Y, Someya D. Application of millimeter waves to measure blood sugar level// Asia-Pacific Microwave Conference. Taipei: IEEE, 2001: 1303-1306.
|
14. |
Shen Y, Lu Z, Spiers S, et al. Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique. Appl Opt, 2000, 39(22): 4007-4012.
|
15. |
Evans N D, Gnudi L, Rolinski O J, et al. Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing. Diabet Technol Therapeut, 2003, 5(5): 807-816.
|
16. |
Caspers P J, Lucassen G W, Puppels G J. Combined in vivo confocal raman spectroscopy and confocal microscopy of human skin. Biophys J, 2003, 85(1): 572-580.
|
17. |
Wang J, Carmon K S, Luck L A, et al. Electrochemical impedance biosensor for glucose detection utilizing a periplasmic E. coli receptor protein. Electrochem Solid State Lett, 2005, 8(8): H61-H64.
|
18. |
Ermolina I, Polevaya Y, Feldman Y. Analysis of dielectric spectra of eukaryotic cells by computer modeling. Eur Biophys J, 2000, 29(2): 141-145.
|
19. |
Gourzi M, Rouane A, Guelaz R. Study of a new electromagnetic sensor for glycaemia measurement: in vitro results on blood pig. J Med Eng Technol, 2009, 27(6): 276-281.
|
20. |
So C F, Choi K S, Wong T K, et al. Recent advances in noninvasive glucose monitoring. Med Devices, 2012, 5(1): 45-52.
|
21. |
Kurnik R T, Oliver J J, Waterhouse S R, et al. Application of the mixtures of experts algorithm for signal processing in a noninvasive glucose monitoring system. Sens Actuators B: Chem, 1999, 60(1): 19-26.
|
22. |
代娟. 近红外光谱无创血糖检测模型研究. 重庆: 重庆大学, 2018.
|
23. |
白路军. 近红外水分检测仪研究. 沈阳: 东北大学, 2013.
|
24. |
贾浩. 散射介质中葡萄糖的等漫反射波长的存在特性及应用. 天津: 天津大学, 2012.
|
25. |
邓斌. 有效提取近红外光谱中糖特异性信号的理论和实验研究. 天津: 天津大学, 2006.
|
26. |
刘娴萱. 基于近红外光谱的血糖检测与分析研究. 北京: 北京邮电大学, 2017.
|
27. |
Yadav J, Rani A, Singh V, et al. Near-infrared LED based non-invasive blood glucose sensor// International Conference on Signal Processing and Integrated Networks. Noida: IEEE, 2014: 591-594.
|
28. |
杜玉宝. 便携式无创血糖检测仪的实现. 重庆: 重庆大学, 2018.
|
29. |
Goodarzi M, Sharma S, Ramon H, et al. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. Trac-trends Anal Chem, 2015, 67: 147-158.
|
30. |
Yadav J, Rani A, Singh V, et al. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed Signal Process Control, 2015, 18: 214-227.
|
31. |
Pastor-Bárcenas O, Soria-Olivas E, Martín-Guerrero J D, et al. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modelling. Ecological Modelling, 2005, 182(2): 149-158.
|
32. |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536.
|
33. |
Zurada J M, Malinowski A, Cloete I. Sensitivity analysis for minimization of input data dimension for feedforward neural network// IEEE International Symposium on Circuits & Systems. London: IEEE, 1994: 447-450.
|
34. |
Wong C X, Worden K. Generalised NARX shunting neural network modelling of friction. Mechan Syst Signal Process, 2007, 21(1): 553-572.
|
35. |
Zhang Ping. Model selection via multifold cross validation. Ann Statist, 1993, 21(1): 299-313.
|
36. |
Prabir B. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 1989, 76(3): 503-514.
|
37. |
代娟, 季忠, 杜玉宝. 基于粒子群和人工神经网络的近红外光谱血糖建模方法研究. 生物医学工程学杂志, 2017, 34(5): 713-720.
|
38. |
李东明, 贾书海. 基于多光谱应用BP人工神经网络预测血糖. 激光与光电子学进展, 2017, 54(3): 244-249.
|
39. |
Clarke W L, Cox D, Gonderfrederick L A. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care, 1987, 23(11): 622-628.
|