1. |
Perry L, Malkin R. Effectiveness of medical equipment donations to improve health systems: how much medical equipment is broken in the developing world?. Med Biol Eng Comput, 2011, 49(7): 719-722.
|
2. |
种银保. 临床工程师规范化培训教程. 北京: 科学出版社, 2017: 24-27.
|
3. |
Webber C M, Martínez-Gálvez G, Higuita M L, et al. Developing strategies for sustainable medical equipment maintenance in under-resourced settings. Ann Glob Health, 2020, 86(1): 39.
|
4. |
周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报, 2009, 35(6): 748-758.
|
5. |
潘海洋, 郑近德, 杨宇, 等. 基于 CELCD 和 MFVPMCD 的智能故障诊断方法研究. 电子学报, 2017, 45(3): 546-551.
|
6. |
Deng L, Yu D. Deep learning: methods and applications. Foundations & Trends in Signal Processing, 2014, 7(3): 197-387.
|
7. |
陈伟宏, 安吉尧, 李仁发, 等. 深度学习认知计算综述. 自动化学报, 2017, 43(11): 1886-1897.
|
8. |
Schmidhuber J. Deep learning in neural networks. Amsterdam: Elsevier Science Ltd, 2015.
|
9. |
周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望. 电力系统自动化, 2019, 43(4): 180-191.
|
10. |
上官伟, 孟月月, 杨嘉明, 等. 基于 LSTM-BP 级联网络的列控车载设备故障诊断. 北京交通大学学报, 2019, 43(1): 54-62.
|
11. |
Huang Y Q. The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network. Machine Tool & Hydraulics, 2015, 43(18): 31-36.
|
12. |
Guo X, Chen L, Shen C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement, 2016, 93(7): 490-502.
|
13. |
Felix A G, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. Neural Comput, 2000, 12(10): 2451-2471.
|
14. |
Wang Weifeng, Qiu Xuehuan, Chen Caisen, et al. Application research on long short-term memory network in fault diagnosis//2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu: IEEE, 2018: 360-365.
|
15. |
王维锋, 邱雪欢, 孙剑桥, 等. 基于双层长短时记忆网络的齿轮故障诊断方法. 装甲兵工程学院学报, 2018, 32(2): 81-85.
|
16. |
de Bruin T, Verbert K, Babuska R. Railway track circuit fault diagnosis using recurrent neural networks. IEEE Trans Neural Netw Learn Syst, 2017, 28(3): 523-533.
|
17. |
刘香君, 种银保, 肖晶晶, 等. 基于数据驱动的设备电路板无图纸故障诊断. 中国医学物理学杂志, 2020, 37(8): 1047-1052.
|
18. |
Ma Yixuan, Zhang Zhenji. Travel mode choice prediction using deep neural networks with entity embeddings. IEEE Access, 2020, 8: 64959-64970.
|
19. |
宋勇, 蔡志平. 大数据环境下基于信息论的入侵检测数据归一化方法. 武汉大学学报: 理学版, 2018, 64(2): 121-126.
|
20. |
Wang Xi, Li Qiang, Xie Zhihong. New Feature Selection Method Based on SVM-RFE. Advanced Materials Research, 2014, 926-930: 3100-3104.
|
21. |
Graves A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer, 2012.
|
22. |
杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述. 计算机应用, 2018, 38(s2): 1-6, 26.
|
23. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems, 2012, 1: 1097-1105.
|
24. |
Torfi A, Iranmanesh S M, Nasrabadi N, et al. 3D convolutional neural networks for cross audio-visual matching recognition. IEEE Access, 2017, 5: 22081-22091.
|
25. |
Li W, Meng Y. Improving the performance of neural networks with random forest in detecting network intrusions//The 10th International Symposium on Neural Networks (ISNN), 2013, 7952: 622-629.
|
26. |
叶靖雯, 吴晓峰. 端到端深度图像分割网络中抑制无效率学习的目标损失函数设计. 微电子学与计算机, 2019, 36(9): 38-43.
|
27. |
Hasnain M, Pasha M F, Ghani I, et al. Evaluating trust prediction and confusion matrix measures for web services ranking. IEEE Access, 2020, 8: 90847-90861.
|
28. |
Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks//30th International Conference on Machine Learning (ICML'13), Atlanta: International Machine Learning Society (IMLS), 2013, 28(3): 1310-1318.
|
29. |
Yao Yuan, Rosasco L, Caponnetto A. On early stopping in gradient descent learning. Constr Approx, 2007, 26(2): 289-315.
|