1. |
Ziemann U. Thirty years of transcranial magnetic stimulation: where do we stand?. Exp Brain Res, 2017, 235(4): 973-984.
|
2. |
Abrahamyan A, Clifford C W, Arabzadeh E, et al. Low intensity TMS enhances perception of visual stimuli. Brain Stimul, 2015, 8(6): 1175-1182.
|
3. |
Perera T, George M S, Grammer G, et al. The clinical TMS society consensus review and treatment recommendations for TMS therapy for major depressive disorder. Brain Stimul, 2016, 9(3): 336-346.
|
4. |
靳静娜, 金芳, 王欣, 等. 低频重复经颅磁刺激刺激初级运动皮层对大脑功能连接影响的研究. 生物医学工程学杂志, 2017, 34(4): 493-499.
|
5. |
Sasaki N, Abo M, Hara T, et al. High-frequency rTMS on leg motor area in the early phase of stroke. Acta Neurol Belg, 2017, 117(1): 189-194.
|
6. |
靳静娜, 王欣, 林雨, 等. rTMS 联合运动训练对静息态脑网络影响的研究. 中国生物医学工程学报, 2018, 37(3): 290-296.
|
7. |
Kamp D, Brinkmeyer J, Agelink M W, et al. High frequency repetitive transcranial magnetic stimulation (rTMS) reduces EEG-hypofrontality in patients with schizophrenia. Psychiatry Res, 2016, 236: 199-201.
|
8. |
Lee J, Sohn E H, Oh E, et al. Cognitive effect of repetitive transcranial magnetic stimulation with cognitive training: long-term mitigation neurodegenerative effects of mild Alzheimer's disease. Int J Gerontol, 2020, 14(2): 133-137.
|
9. |
Diamond A. Executive functions. Annu rev psychol, 2013, 64: 135-168.
|
10. |
Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci, 2004, 7(5): 446-451.
|
11. |
Canolty R T, Knight R T. The functional role of cross-frequency coupling. Trends Cogn Sci, 2010, 14(11): 506-515.
|
12. |
Funahashi S. Working memory in the prefrontal cortex. Brain Sci, 2017, 7(5): 49.
|
13. |
Antonio H L, Jonathan D W. The role of prefrontal cortex in working memory: a mini review. Front Syst Neurosci, 2015, 9: 1-7.
|
14. |
Roux F, Uhlhaas P J. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information?. Trends Cogn Sci, 2014, 18(1): 16-25.
|
15. |
徐佳敏, 王策群, 林龙年. 多通道在体记录技术——动作电位与场电位信号处理. 生理学报, 2014, 66(3): 349-357.
|
16. |
李双燕, 温雪晗, 桑浩钧, 等. 工频电磁场长期作用影响工作记忆中局部场电位因果网络连接特征. 生物医学工程学杂志, 2018, 35(6): 829-836.
|
17. |
Crouch B, Sommerlade L, Veselcic P, et al. Detection of time-, frequency- and direction-resolved communication within brain networks. Sci Rep, 2018, 8(1): 1825.
|
18. |
Earl K, Mikael L, Andre M. Working memory 2.0. Neuron, 2018, 100(02): 463-475.
|
19. |
Wang X, Mao Zhiqi, Ling Zhipei, et al. Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer's disease: a meta-analysis of randomized controlled trials. J Neurol, 2020, 267(3): 791-801.
|
20. |
Ahmed M A, Darwish E S, Khedr E M, et al. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol, 2012, 259(1): 83-92.
|
21. |
Paxinos G, Watson C. The rat brain in stereotaxic coordinates-the new coronal set 5th edition. Salt Lake City: Academic Press, 2004.
|
22. |
Yu C, Fan D, Lopez A, et al. Dynamic changes in single unit activity and γ oscillations in a thalamocortical circuit during rapid instrumental learning. PLoS One, 2012, 7(11): e50578.
|
23. |
Jones M W, Wilson M A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol, 2005, 3(12): 2187-2199.
|
24. |
Liu T, Bai Wenwen, Xia Mi, et al. Directional hippocampal-prefrontal interactions during working memory. Behav Brain Res, 2018, 338: 1-8.
|
25. |
Liu T, Bai Wenwen, Wang J, et al. An aberrant Link between gamma oscillation and functional connectivity in Aβ1-42-mediated memory deficits in rats. Behav Brain Res, 2016, 297: 51-58.
|
26. |
Biskamp J, Bartos M, Sauer J F. Organization of prefrontal network activity by respiration-related oscillations. Sci Rep, 2017, 7: 45508.
|
27. |
Beynel L, Davis S W, Crowell C A, et al. Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: a randomized within-subject comparison. PLoS One, 2019, 14(3): e0213707.
|
28. |
Guo Z, Jiang Zhijun, Jiang Binghu, et al. High-Frequency repetitive transcranial magnetic stimulation could improve impaired working memory induced by sleep deprivation. Neural Plast, 2019, 2019: 7030286.
|
29. |
Yang Huiyun, Liu Yang, Xie Jiacun, et al. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behav Brain Res, 2015, 281: 149-155.
|
30. |
Zhang N, Xing M, Wang Y, et al. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF–NMDAR pathways in a rat model of vascular dementia. Neuroscience, 2015, 311: 284-291.
|
31. |
王玲, 杨佳佳, 王发颀, 等. 经颅磁刺激对抑郁模型动物的作用研究进展. 中国生物医学工程学报, 2018, 37(4): 498-507.
|
32. |
Bai W, Liu Tiaotiao, Dou Mengmeng, et al. Repetitive transcranial magnetic stimulation reverses Aβ1-42-induced dysfunction in gamma oscillation during working memory. Curr Alzheimer Res, 2018, 15(6): 570-577.
|
33. |
Sharma G, Annetta N, Friedenberg D, et al. Time stability and coherence analysis of multiunit, Single-Unit and local field potential neuronal signals in chronically implanted brain electrodes. Bioelectron Med, 2015, 2(1): 63-71.
|
34. |
Bowyer S M. Coherence a measure of the brain networks: past and present. Neuropsychiatr Electrophysiol, 2016, 2(1): 1-12.
|
35. |
Bygrave A M, Jahans-Price T, Wolff A R, et al. Hippocampal-prefrontal coherence mediates working memory and selective attention at distinct frequency bands and provides a causal Link between schizophrenia and its risk gene GRIA1. Transl Psychiatry, 2019, 9(1): 142.
|