1. |
Pollard J M, Wen Zhifei, Sadagopan R, et al. The future of image-guided radiotherapy will be MR guided. Br J Radiol, 2017, 90(173): 20160667.
|
2. |
Winkel D, Bol G H, Kroon P S, et al. Adaptive radiotherapy: the Elekta Unity MR-linac concept. Clin Transl Radiat Oncol, 2019, 18: 54-59.
|
3. |
Liney G P, Whelan B, Oborn B, et al. MRI-Linear accelerator radiotherapy systems. Clin Oncol, 2018, 30(11): 686-691.
|
4. |
Kerkmeijer L, Maspero M, Meijer G J, et al. Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. Clin Oncol, 2018, 30(11): 692-701.
|
5. |
Mcwilliam A, Rowland B, van Herk M. The challenges of using MRI during radiotherapy. Clin Oncol (R Coll Radiol), 2018, 30(11): 680-685.
|
6. |
Rai R, Kumar S, Batumalai V, et al. The integration of MRI in radiation therapy: collaboration of radiographers and radiation therapists. J Med Radiat Sci, 2017, 64(1): 61-68.
|
7. |
Raaymakers B W, Jürgenliemk-Schulz I M, Bol G H, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol, 2017, 62(23): L41-L50.
|
8. |
Liney G P, Jelen U, Byrne H, et al. Technical Note: the first live treatment on a 1.0 Tesla inline MRI-linac. Med Phys, 2019, 46(7): 3254-3258.
|
9. |
Lagendijk J J, Raaymakers B W, van Vulpen M. The magnetic resonance imaging-linac system. Semin Radiat Oncol, 2014, 24(3): 207-209.
|
10. |
Keall P J, Barton M, Crozier S, et al. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol, 2014, 24(3): 203-206.
|
11. |
Whelan B, Gierman S, Holloway L, et al. A novel electron accelerator for MRI-Linac radiotherapy. Med Phys, 2016, 43(3): 1285-1294.
|
12. |
Begg J, George A, Alnaghy S J, et al. The Australian MRI-Linac program: measuring profiles and PDD in a horizontal beam. J Phys: Conf, 2017, 777: 012035.
|
13. |
Bertelsen A S, Schytte T, Møller P K, et al. First clinical experiences with a high field 1.5 T MR linac. Acta Oncol, 2019, 58(10): 1352-1357.
|
14. |
Wee C W, An H J, Kang H C, et al. Variability of gross tumor volume delineation for stereotactic body radiotherapy of the lung with Tri-60Co magnetic resonance image-guided radiotherapy system (ViewRay): a comparative study with magnetic resonance-and computed tomography-based target delineation. Technol Cancer Res T, 2018, 17: 1533033818787383.
|
15. |
应延辰, 陈华, 王昊, 等. ViewRay 磁共振引导放疗系统的研究进展. 中华放射医学与防护杂志, 2019, 39(4): 316-320.
|
16. |
Raaijmakers A E, Raaymakers B W, Lagendijk J W, et al. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol, 2005, 50(4): 1363-1376.
|
17. |
Raaijmakers A E, Raaymakers B W, Meer S D, et al. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Phys Med Biol, 2007, 52(4): 929-939.
|
18. |
Lühr A, Burigo L N, Gantz S, et al. Proton beam electron return effect: Monte Carlo simulations and experimental verification. Phys Med Biol, 2019, 64(3): 035012.
|
19. |
Costa F, Doran S J, Hanson I M, et al. Investigating the effect of a magnetic field on dose distributions at phantom-air interfaces using PRESAGE® 3D dosimeter and Monte Carlo simulations. Phys Med Biol, 2018, 63(5): 05NT01.
|
20. |
Han E Y, Wen Zhifei, Lee H J, et al. Measurement of electron return effect and skin dose reduction by a bolus in an anthropomorphic physical phantom under a magnetic resonance guided linear accelerator (MR-LINAC) system. Int J Med Phy, Clin EngRadiat Oncol, 2018, 7(3): 339-346.
|
21. |
Raaijmakers A E, Hårdemark B, Raaymakers B W, et al. Dose optimization for the MRI-accelerator: IMRT in the presence of a magnetic field. Phys Med Biol, 2007, 52(23): 7045-7054.
|
22. |
Bol G H, Lagendijk J J, Raaymakers B W. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields. Phys Med Biol, 2015, 60(2): 755-768.
|
23. |
Boldrini L, Cusumano D, Cellini F, et al. Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol, 2019, 14(1): 71-76.
|
24. |
Olberg S, Green O, CAI B, et al. Optimization of treatment planning workflow and tumor coverage during daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT) of pancreatic cancer. Radiat Oncol, 2018, 13(1): 51.
|
25. |
Boldrini L, Cellini F, Manfrida S, et al. Use of indirect target gating in magnetic resonance-guided liver stereotactic body radiotherapy: case report of an oligometastatic patient. Cureus, 2018, 10(3): e2292.
|
26. |
Kontaxis C, Bol G H, Stemkens B, et al. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Phys Med Biol, 2017, 62(18): 7233-7248.
|
27. |
Steinmann A, Alvarez P, Lee H, et al. MRIgRT dynamic lung motion thorax anthropomorphic QA phantom: design, development, reproducibility, and feasibility study. Med Phys, 2019, 46(11): 5124-5133.
|
28. |
Ng S P, Koay E J. Current and emerging radiotherapy strategies for pancreatic adenocarcinoma: stereotactic, intensity modulated and particle radiotherapy. Ann Pancreat Cancer, 2018, 1: 22.
|
29. |
Massaccesi M, Cusumano D, Boldrini L, et al. A new frontier of image guidance. Organs at risk avoidance with MRI-guided respiratory-gated intensity modulated radiotherapy. J Appl Clin Med Phys, 2019, 20(6): 194-198.
|
30. |
El-Bared N, Portelance L, Spieler B O, et al. Dosimetric benefits and practical pitfalls of daily online adaptive MRI-guided stereotactic radiation therapy for pancreatic cancer. Pract Radiat Oncol, 2019, 9(1): e46-e54.
|
31. |
Yang R, Santos D M, Fallone B, et al. A novel transport sweep architecture for efficient deterministic patient dose calculations in MRI-guided radiotherapy. Phys Med Biol, 2019, 64: 185012.
|
32. |
Mateo C, Knutsen P M, Tsai P S, et al. Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent "resting-state" connectivity. Neuron, 2017, 96(4): 936-948.
|
33. |
Dieterich S, Green O, Booth J. SBRT targets that move with respiration. Phys Med, 2018, 56: 19-24.
|
34. |
Cao Y, Tseng C L, Balter J M, et al. MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro Oncol, 2017, 19(suppl_2): ii16-ii29.
|
35. |
Hassanien O A, Abouelkheir R T, El-Ghar E I, et al. Dynamic contrast-enhanced magnetic resonance imaging as a diagnostic tool in the assessment of tumour angiogenesis in urinary bladder cancer. Can Assoc Radiol J, 2019, 70(3): 254-263.
|
36. |
Khan K A, Jain S K, Sinha V D, et al. Preoperative diffusion tensor imaging: a landmark modality for predicting the outcome and characterization of supratentorial intra-axial brain tumors. World Neurosurg, 2019, 124: e540-e551.
|
37. |
Peltenburg B, Schakel T, Terhaard C, et al. Functional diffusion maps to assess treatment response in head and neck tumors. Radiotherapy and Oncology, 2018, 127(suppl 1): S1159-S1160.
|
38. |
Macmanus M, Everitt S, Schimek-Jasch T, et al. Anatomic, functional and molecular imaging in lung cancer precision radiation therapy: treatment response assessment and radiation therapy personalization. Transl Lung Cancer Res, 2017, 6(6): 670-688.
|
39. |
Chin S, Eccles C L, Mcwilliam A, et al. Magnetic resonance-guided radiation therapy: a review. J Med Imaging Radiat Oncol, 2020, 64(1): 163-177.
|
40. |
Noble D J, Burnet N G. The future of image-guided radiotherapy-is image everything?. Br J Radiol, 2018, 91(187): 20170894.
|
41. |
黄伟, LI X A, 李宝生. MRI 引导的自适应放疗技术进展. 中华放射肿瘤学杂志, 2017, 26(7): 819-822.
|