- 1. PKU-HKUST Shenzhen-HongKong Institution, Shenzhen, Guangdong 518057, P.R.China;
- 2. Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R.China;
Coronary artery diseases (CAD) have always been serious threats to human health. The measurement, constitutive modeling, and analysis of mechanical properties of the blood vessel wall can provide a tool for disease diagnosis, stent implantation, and artificial artery design. The vessel wall has both active and passive mechanical properties. The passive mechanical properties are mainly determined by elastic and collagen fibers, and the active mechanical properties are determined by the contraction of vascular smooth muscle cells (VSMC). Substantial studies have shown that, the two-layer model of the vessel wall can feature the mechanical properties well, and the circumferential, axial and radial strain and stress are of great significance in arterial wall mechanics. This study reviewed recent investigations of mechanical properties of the vessel wall. Challenges and opportunities in this area are discussed relevant to the clinical treatment of coronary artery diseases.
Citation: FENG Yundi, WU Hao, HUO Yunlong. Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall. Journal of Biomedical Engineering, 2020, 37(6): 939-947. doi: 10.7507/1001-5515.202008030 Copy
1. | Hu S, Gao R, Liu L, et al. Summary of the 2018 report on cardiovascular diseases in China. Chin Circul J, 2019, 34(3): 209-220. |
2. | Fung Y C, Cowin S C. Biomechanics. Mechanical properties of living tissues. Bioviscoelastic Solids, 1994, 61(4): 464-465. |
3. | 姜宗来. 心血管生物力学研究的新进展. 医用生物力学, 2010, 25(5): 313-315, 351. |
4. | Han Y, Huang K, Yao Q P, et al. Mechanobiology in vascular remodeling. Natl Sci Rev, 2018, 5(6): 933-946. |
5. | Akintewe O O, Roberts E G, Rim N G, et al. Design approaches to myocardial and vascular tissue engineering. Annu Rev Biomed Eng, 2017, 19: 389-414. |
6. | Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable scaffold: The emerging reality and future directions. Circ Res, 2017, 120(8): 1341-1352. |
7. | Holzapfel G A, Ogden R W. Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components. Am J Physiol Heart Circ Physiol, 2018, 315(3): H540-H549. |
8. | Konidala S, Gutterman D D. Coronary vasospasm and the regulation of coronary blood flow. Prog Cardiovasc Dis, 2004, 46(4): 349-373. |
9. | Mulvany M J, Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res, 1977, 41(1): 19-26. |
10. | Young M A, Vatner S F. Regulation of large coronary arteries. Circ Res, 1986, 59(6): 579-596. |
11. | Landmesser U, Hornig B, Drexler H. Endothelial function: A critical determinant in atherosclerosis?. Circulation, 2004, 109(21 Suppl 1): II27-1133. |
12. | Pahlavan P S, Niroomand F. Coronary artery aneurysm: A review. Clin Cardiol, 2006, 29(10): 439-443. |
13. | Lu X, Bean J S, Kassab G S, et al. Protein kinase c inhibition ameliorates functional endothelial insulin resistance and vascular smooth muscle cell hypersensitivity to insulin in diabetic hypertensive rats. Cardiovasc Diabetol, 2011, 10: 48. |
14. | Kim J, Wagenseil J E. Bio-chemo-mechanical models of vascular mechanics. Ann Biomed Eng, 2015, 43(7): 1477-1487. |
15. | Chen H, Kassab G S. Microstructure-based biomechanics of coronary arteries in health and disease. J Biomech, 2016, 49(12): 2548-2559. |
16. | Gasser T C. Vascular tissue biomechanics: Constitutive modeling of the arterial wall. 2019. |
17. | Humphrey J D. Cardiovascular solid mechanics. New York: Springer-Verlag, 2002. |
18. | Huo Y, Zhao X, Cheng Y, et al. Two-layer model of coronary artery vasoactivity. J Appl Physiol, 2013, 114(10): 1451-1459. |
19. | Huo Y, Cheng Y, Zhao X, et al. Biaxial vasoactivity of porcine coronary artery. Am J Physiol Heart Circ Physiol, 2012, 302(10): H2058-2063. |
20. | Lu X, Kassab G S. Vasoactivity of blood vessels using a novel isovolumic myograph. Ann Biomed Eng, 2007, 35(3): 356-366. |
21. | Carpenter H J, Gholipour A, Ghayesh M H, et al. A review on the biomechanics of coronary arteries. Int J Eng Sci, 2020, 147: 103201. |
22. | Holzapfel G A, Niestrawska J A, Ogden R W, et al. Modelling non-symmetric collagen fibre dispersion in arterial walls. J R Soc Interface, 2015, 12(106): 20150188. |
23. | Holzapfel G A, Ogden R W. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface, 2010, 7(46): 787-799. |
24. | Rachev A, Hayashi K. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng, 1999, 27(4): 459-468. |
25. | Carlson B E, Secomb T W. A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. Microcirculation, 2005, 12(4): 327-338. |
26. | Yang J, Clark J W Jr., Bryan R M, et al The myogenic response in isolated rat cerebrovascular arteries: Vessel model. Med Eng Phys, 2003, 25(8): 711-717. |
27. | Holzapfel G A, Ogden R W. An arterial constitutive model accounting for collagen content and cross-linking. J Mech Phys Solids, 2019, 136: 103682. |
28. | Niestrawska J A, Viertler C, Regitnig P, et al. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: Experimental analysis and modelling. J R Soc Interface, 2016, 13(124): 20160620. |
29. | Wagner H P, Humphrey J D. Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: Basilar versus common carotid. J Biomech Eng, 2011, 133(5): 051009. |
30. | Stalhand J A, Klarbring G A, Holzapfel A. A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J Theor Biol, 2011, 268(1): 120-130. |
31. | Lu X, Pandit A, Kassab G S. Biaxial incremental homeostatic elastic moduli of coronary artery: Two-layer model. Am J Physiol Heart Circ Physiol, 2004, 287(4): H1663-H1669. |
32. | Hayman D M, Zhang J, Liu Q, et al. Smooth muscle cell contraction increases the critical buckling pressure of arteries. J Biomech, 2013, 46(4): 841-844. |
33. | Murtada S I, Ferruzzi J, Yanagisawa H, et al. Reduced biaxial contractility in the descending thoracic aorta of fibulin-5 deficient mice. J Biomech Eng, 2016, 138(5): 051008. |
34. | Takamizawa K. Biaxial contractile mechanics of common carotid arteries of rabbit. J Biomech Eng, 2015, 137(3). DOI: 10.1115/1.4028988. |
35. | Caulk A W, Humphrey J D, Murtada S I. Fundamental roles of axial stretch in isometric and isobaric evaluations of vascular contractility. J Biomech Eng, 2019, 141(3): 0310081-03100810. |
36. | Wang C, Garcia M, Lu X, et al. Three-dimensional mechanical properties of porcine coronary arteries: A validated two-layer model. Am J Physiol Heart Circ Physiol, 2006, 291(3): H1200-H1209. |
37. | Luo T, Chen H, Kassab G S. 3D reconstruction of coronary artery vascular smooth muscle cells. PLoS One, 2016, 11(2): e0147272. |
38. | Sommer G, Regitnig P, Költringer L, et al. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am J Physiol-Heart C, 2010, 298(3): H898-H912. |
39. | Hollander Y, Durban D, Lu X, et al. Experimentally validated microstructural 3D constitutive model of coronary arterial media. J Biomech Eng, 2011, 133(3): 031007. |
40. | Chen H, Guo X, Luo T, et al. A validated 3D microstructure-based constitutive model of coronary artery adventitia. J Appl Physiol, 2016, 121(1): 333-342. |
41. | Sommer G, Benedikt C, Niestrawska J A, et al. Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion. Acta Biomater, 2018, 75: 235-252. |
42. | Chen H, Kassab G S. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction. Sci Rep, 2017, 7(1): 9339. |
43. | Ambrosi D, Ben Amar M, Cyron C J, et al. Growth and remodelling of living tissues: Perspectives, challenges and opportunities. J R Soc Interface, 2019, 16(157): 20190233. |
44. | Valdez-Jasso D, Bia D, Zocalo Y, et al. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions. Ann Biomed Eng, 2011, 39(5): 1438-1456. |
45. | Amabili M, Balasubramanian P, Bozzo I, et al. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas. J Mech Behav Biomed Mater, 2019, 99: 27-46. |
46. | Holzapfel G A, Ogden R W. On the tension-compression switch in soft fibrous solids. Eur J Mech A/Solid, 2015, 49: 561-569. |
47. | Zhang W, Liu Y, Kassab G S. Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: Implications for vessel fatigue. Am J Physiol Heart Circ Physiol, 2007, 293(4): H2355-H2360. |
48. | Bauer M, Morales-Orcajo E, Klemm L, et al. Biomechanical and microstructural characterisation of the porcine stomach wall: Location- and layer-dependent investigations. Acta Biomater, 2019, 102: 83-99. |
49. | Pandit A, Lu X, Wang C, et al. Biaxial elastic material properties of porcine coronary media and adventitia. Am J Physiol Heart Circ Physiol, 2005, 288(6): H2581-H2587. |
50. | Chen H, Slipchenko M N, Liu Y, et al. Biaxial deformation of collagen and elastin fibers in coronary adventitia. J Appl Physiol, 2013, 115(11): 1683-1693. |
51. | Chen H, Luo T, Zhao X, et al. Microstructural constitutive model of active coronary media. Biomaterials, 2013, 34(31): 7575-7583. |
52. | Fung Y C, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol, 1979, 237(5): H620-H631. |
53. | Zhang W, Lu X, Kassab G S. Shear modulus of porcine coronary artery in reference to a new strain measure. Biomaterials, 2007, 28(31): 4733-4738. |
54. | Zhang W, Chen H Y, Kassab G S. A rate-insensitive linear viscoelastic model for soft tissues. Biomaterials, 2007, 28(24): 3579-3586. |
55. | Zhang W, Kassab G S. A bilinear stress-strain relationship for arteries. Biomaterials, 2007, 28(6): 1307-1315. |
56. | Zhang W, Wang C, Kassab G S. The mathematical formulation of a generalized Hooke’s law for blood vessels. Biomaterials, 2007, 28(24): 3569-3578. |
57. | Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech, 1983, 16(1): 1-12. |
58. | Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech, 1979, 12(6): 423-436. |
59. | Humphrey J D, Yin F C. A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys J, 1987, 52(4): 563-570. |
60. | Holzapfel G A, Gasser T C, Ogden R W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast, 2000, 61(1-3): 1-48. |
61. | Holzapfel G A, Gasser T C, Stadler M. A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur J Mech A/Solid, 2002, 21(3): 441-463. |
62. | Gasser T C, Ogden R W, Holzapfel G A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface, 2006, 3(6): 15-35. |
63. | Sáez P, Peña E, Martínez M A. A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries. Ann Biomed Eng, 2014, 42(6): 1158-1169. |
64. | Holzapfel G A, Ogden R W. Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues. Eur J Mech A/Solids, 2017, 66: 193-200. |
65. | Li K, Ogden R W, Holzapfel G A. Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur J Mech, 2016, 57: 178-193. |
66. | Bevan J A, Hwa J J. Myogenic tone and cerebral vascular autoregulation: The role of a stretch-dependent mechanism. Ann Biomed Eng, 1985, 13(3-4): 281-286. |
67. | Holzapfel G A, Ogden R W, Sherifova S. On fibre dispersion modelling of soft biological tissues: A review. Proc Math Phys Eng Sci, 2019, 475: 2224. |
68. | Holzapfel G A, Gasser T C. Computational stress-deformation analysis of arterial walls including high-pressure response. Int J Cardiol, 2007, 116(1): 78-85. |
69. | Li K, Ogden R W, Holzapfel G A. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J R Soc Interface, 2018, 15(138): 20170766. |
70. | Rachev A, Shazly T. A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen. J Mech Behav Biomed Mater, 2019, 90: 61-72. |
71. | Wang Y, Zeinali-Davarani S, Zhang Y. Arterial mechanics considering the structural and mechanical contributions of ECM constituents. J Biomech, 2016, 49(12): 2358-2365. |
72. | Carboni M, Desch G W, Weizsacker H W. Passive mechanical properties of porcine left circumflex artery and its mathematical description. Med Eng Phys, 2007, 29(1): 8-16. |
73. | Humphrey J D. Cardiovascular solid mechanics: Cells, tissues, and organs. Springer Science & Business Media, 2013. |
74. | Hayashi K, Hirayama E. Age-related changes of wall composition and collagen cross-linking in the rat carotid artery – in relation with arterial mechanics. J Mech Behav Biomed Mater, 2017, 65: 881-889. |
75. | Annovazzi L, Genna F. An engineering, multiscale constitutive model for fiber-forming collagen in tension. J Biomed Mater Res A, 2010, 92A(1): 254-266. |
76. | Chen H, Liu Y, Zhao X, et al. A micromechanics finite-strain constitutive model of fibrous tissue. J Mech Phys Solids, 2011, 59(9): 1823-1837. |
77. | Sigaeva T, Sommer G, Holzapfel G, et al. Anisotropic residual stresses in arteries. J R Soc Interface, 2019, 16(151): 20190029. |
78. | Leng X, Davis L, Deng X, et al. An inverse analysis of cohesive zone model parameter values for human fibrous cap mode I tearing. arXiv, 2018: 1806.05013. |
79. | Ahuja A, Noblet J N, Trudnowski T, et al. Biomechanical material characterization of stanford type-B dissected porcine aortas. Front Physiol, 2018, 9: 1317. |
80. | Ayyalasomayajula V, Pierrat B, Badel P. A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia. Biomech Model Mechanobiol, 2019, 18(5): 1507-1528. |
81. | Lee Y U, Naito Y, Kurobe H, et al. Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. J Biomech, 2013, 46(13): 2277-2282. |
82. | Cornelissen A J, Dankelman J, Vanbavel E, et al. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: A model study. Am J Physiol Heart Circ Physiol, 2002, 282(6): H2224-H2237. |
83. | Yang J, Clark J W Jr, Bryan R M, et al. The myogenic response in isolated rat cerebrovascular arteries: Smooth muscle cell model. Med Eng Phys, 1002, 14(7): 691-709. |
84. | Algranati D, Kassab G S, Lanir Y. Flow restoration post revascularization predicted by stenosis indexes: Sensitivity to hemodynamic variability. Am J Physiol Heart Circ Physiol, 2013, 305(2): H145-H154. |
85. | Algranati D, Kassab G S, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol, 2011, 300(3): H1090-H1100. |
86. | Algranati D, Kassab G S, Lanir Y. Mechanisms of myocardium-coronary vessel interaction. Am J Physiol Heart Circ Physiol, 2010, 298(3): H861-H873. |
87. | Lu Y, Wu H, Li J, et al. Passive and active triaxial wall mechanics in a two-layer model of porcine coronary artery. Sci Rep, 2017, 7(1): 13911. |
88. | Ramachandra A B, Humphrey J D. Biomechanical characterization of murine pulmonary arteries. J Biomech, 2019, 84: 18-26. |
89. | Haspinger D C, Murtada S L, Niestrawska J A, et al. Numerical analyses of the interrelation between extracellular smooth muscle orientation and intracellular filament overlap in the human abdominal aorta. ZAMM, 2018, 98(12): 2198-2221. |
90. | Millman B M. The filament lattice of striated muscle. Physiol Rev, 1998, 78(2): 359-391. |
91. | Milewicz D M, Trybus K M, Guo D C, et al. Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol, 2017, 37(1): 26-34. |
92. | Chen P Y, Qin L, Li G, et al. Smooth muscle cell reprogramming in aortic aneurysms. Cell Stem Cell, 2020, 26(4): 542-557. |
93. | Fan T, Zhou Z, Fang W, et al. Morphometry and hemodynamics of coronary artery aneurysms caused by atherosclerosis. Atherosclerosis, 2019, 284: 187-193. |
94. | Huang X, Liu D, Yin X, et al. Morphometry and hemodynamics of posterior communicating artery aneurysms: Ruptured versus unruptured. J Biomech, 2018, 76: 35-44. |
95. | Lu D, Kassab G S. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface, 2011, 8(63): 1379-1385. |
96. | Kassab G S, Navia J A. Biomechanical considerations in the design of graft: The homeostasis hypothesis. Annu Rev Biomed Eng, 2006, 8: 499-535. |
97. | Murtada S I, Humphrey J D, Holzapfel G A. Multiscale and multiaxial mechanics of vascular smooth muscle. Biophys J, 2017, 113(3): 714-727. |
98. | Coccarelli A, Edwards D H, Aggarwal A, et al. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics. J R Soc Interface, 2018, 15(139): 20170732. |
- 1. Hu S, Gao R, Liu L, et al. Summary of the 2018 report on cardiovascular diseases in China. Chin Circul J, 2019, 34(3): 209-220.
- 2. Fung Y C, Cowin S C. Biomechanics. Mechanical properties of living tissues. Bioviscoelastic Solids, 1994, 61(4): 464-465.
- 3. 姜宗来. 心血管生物力学研究的新进展. 医用生物力学, 2010, 25(5): 313-315, 351.
- 4. Han Y, Huang K, Yao Q P, et al. Mechanobiology in vascular remodeling. Natl Sci Rev, 2018, 5(6): 933-946.
- 5. Akintewe O O, Roberts E G, Rim N G, et al. Design approaches to myocardial and vascular tissue engineering. Annu Rev Biomed Eng, 2017, 19: 389-414.
- 6. Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable scaffold: The emerging reality and future directions. Circ Res, 2017, 120(8): 1341-1352.
- 7. Holzapfel G A, Ogden R W. Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components. Am J Physiol Heart Circ Physiol, 2018, 315(3): H540-H549.
- 8. Konidala S, Gutterman D D. Coronary vasospasm and the regulation of coronary blood flow. Prog Cardiovasc Dis, 2004, 46(4): 349-373.
- 9. Mulvany M J, Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res, 1977, 41(1): 19-26.
- 10. Young M A, Vatner S F. Regulation of large coronary arteries. Circ Res, 1986, 59(6): 579-596.
- 11. Landmesser U, Hornig B, Drexler H. Endothelial function: A critical determinant in atherosclerosis?. Circulation, 2004, 109(21 Suppl 1): II27-1133.
- 12. Pahlavan P S, Niroomand F. Coronary artery aneurysm: A review. Clin Cardiol, 2006, 29(10): 439-443.
- 13. Lu X, Bean J S, Kassab G S, et al. Protein kinase c inhibition ameliorates functional endothelial insulin resistance and vascular smooth muscle cell hypersensitivity to insulin in diabetic hypertensive rats. Cardiovasc Diabetol, 2011, 10: 48.
- 14. Kim J, Wagenseil J E. Bio-chemo-mechanical models of vascular mechanics. Ann Biomed Eng, 2015, 43(7): 1477-1487.
- 15. Chen H, Kassab G S. Microstructure-based biomechanics of coronary arteries in health and disease. J Biomech, 2016, 49(12): 2548-2559.
- 16. Gasser T C. Vascular tissue biomechanics: Constitutive modeling of the arterial wall. 2019.
- 17. Humphrey J D. Cardiovascular solid mechanics. New York: Springer-Verlag, 2002.
- 18. Huo Y, Zhao X, Cheng Y, et al. Two-layer model of coronary artery vasoactivity. J Appl Physiol, 2013, 114(10): 1451-1459.
- 19. Huo Y, Cheng Y, Zhao X, et al. Biaxial vasoactivity of porcine coronary artery. Am J Physiol Heart Circ Physiol, 2012, 302(10): H2058-2063.
- 20. Lu X, Kassab G S. Vasoactivity of blood vessels using a novel isovolumic myograph. Ann Biomed Eng, 2007, 35(3): 356-366.
- 21. Carpenter H J, Gholipour A, Ghayesh M H, et al. A review on the biomechanics of coronary arteries. Int J Eng Sci, 2020, 147: 103201.
- 22. Holzapfel G A, Niestrawska J A, Ogden R W, et al. Modelling non-symmetric collagen fibre dispersion in arterial walls. J R Soc Interface, 2015, 12(106): 20150188.
- 23. Holzapfel G A, Ogden R W. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface, 2010, 7(46): 787-799.
- 24. Rachev A, Hayashi K. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng, 1999, 27(4): 459-468.
- 25. Carlson B E, Secomb T W. A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. Microcirculation, 2005, 12(4): 327-338.
- 26. Yang J, Clark J W Jr., Bryan R M, et al The myogenic response in isolated rat cerebrovascular arteries: Vessel model. Med Eng Phys, 2003, 25(8): 711-717.
- 27. Holzapfel G A, Ogden R W. An arterial constitutive model accounting for collagen content and cross-linking. J Mech Phys Solids, 2019, 136: 103682.
- 28. Niestrawska J A, Viertler C, Regitnig P, et al. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: Experimental analysis and modelling. J R Soc Interface, 2016, 13(124): 20160620.
- 29. Wagner H P, Humphrey J D. Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: Basilar versus common carotid. J Biomech Eng, 2011, 133(5): 051009.
- 30. Stalhand J A, Klarbring G A, Holzapfel A. A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J Theor Biol, 2011, 268(1): 120-130.
- 31. Lu X, Pandit A, Kassab G S. Biaxial incremental homeostatic elastic moduli of coronary artery: Two-layer model. Am J Physiol Heart Circ Physiol, 2004, 287(4): H1663-H1669.
- 32. Hayman D M, Zhang J, Liu Q, et al. Smooth muscle cell contraction increases the critical buckling pressure of arteries. J Biomech, 2013, 46(4): 841-844.
- 33. Murtada S I, Ferruzzi J, Yanagisawa H, et al. Reduced biaxial contractility in the descending thoracic aorta of fibulin-5 deficient mice. J Biomech Eng, 2016, 138(5): 051008.
- 34. Takamizawa K. Biaxial contractile mechanics of common carotid arteries of rabbit. J Biomech Eng, 2015, 137(3). DOI: 10.1115/1.4028988.
- 35. Caulk A W, Humphrey J D, Murtada S I. Fundamental roles of axial stretch in isometric and isobaric evaluations of vascular contractility. J Biomech Eng, 2019, 141(3): 0310081-03100810.
- 36. Wang C, Garcia M, Lu X, et al. Three-dimensional mechanical properties of porcine coronary arteries: A validated two-layer model. Am J Physiol Heart Circ Physiol, 2006, 291(3): H1200-H1209.
- 37. Luo T, Chen H, Kassab G S. 3D reconstruction of coronary artery vascular smooth muscle cells. PLoS One, 2016, 11(2): e0147272.
- 38. Sommer G, Regitnig P, Költringer L, et al. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am J Physiol-Heart C, 2010, 298(3): H898-H912.
- 39. Hollander Y, Durban D, Lu X, et al. Experimentally validated microstructural 3D constitutive model of coronary arterial media. J Biomech Eng, 2011, 133(3): 031007.
- 40. Chen H, Guo X, Luo T, et al. A validated 3D microstructure-based constitutive model of coronary artery adventitia. J Appl Physiol, 2016, 121(1): 333-342.
- 41. Sommer G, Benedikt C, Niestrawska J A, et al. Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion. Acta Biomater, 2018, 75: 235-252.
- 42. Chen H, Kassab G S. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction. Sci Rep, 2017, 7(1): 9339.
- 43. Ambrosi D, Ben Amar M, Cyron C J, et al. Growth and remodelling of living tissues: Perspectives, challenges and opportunities. J R Soc Interface, 2019, 16(157): 20190233.
- 44. Valdez-Jasso D, Bia D, Zocalo Y, et al. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions. Ann Biomed Eng, 2011, 39(5): 1438-1456.
- 45. Amabili M, Balasubramanian P, Bozzo I, et al. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas. J Mech Behav Biomed Mater, 2019, 99: 27-46.
- 46. Holzapfel G A, Ogden R W. On the tension-compression switch in soft fibrous solids. Eur J Mech A/Solid, 2015, 49: 561-569.
- 47. Zhang W, Liu Y, Kassab G S. Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: Implications for vessel fatigue. Am J Physiol Heart Circ Physiol, 2007, 293(4): H2355-H2360.
- 48. Bauer M, Morales-Orcajo E, Klemm L, et al. Biomechanical and microstructural characterisation of the porcine stomach wall: Location- and layer-dependent investigations. Acta Biomater, 2019, 102: 83-99.
- 49. Pandit A, Lu X, Wang C, et al. Biaxial elastic material properties of porcine coronary media and adventitia. Am J Physiol Heart Circ Physiol, 2005, 288(6): H2581-H2587.
- 50. Chen H, Slipchenko M N, Liu Y, et al. Biaxial deformation of collagen and elastin fibers in coronary adventitia. J Appl Physiol, 2013, 115(11): 1683-1693.
- 51. Chen H, Luo T, Zhao X, et al. Microstructural constitutive model of active coronary media. Biomaterials, 2013, 34(31): 7575-7583.
- 52. Fung Y C, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol, 1979, 237(5): H620-H631.
- 53. Zhang W, Lu X, Kassab G S. Shear modulus of porcine coronary artery in reference to a new strain measure. Biomaterials, 2007, 28(31): 4733-4738.
- 54. Zhang W, Chen H Y, Kassab G S. A rate-insensitive linear viscoelastic model for soft tissues. Biomaterials, 2007, 28(24): 3579-3586.
- 55. Zhang W, Kassab G S. A bilinear stress-strain relationship for arteries. Biomaterials, 2007, 28(6): 1307-1315.
- 56. Zhang W, Wang C, Kassab G S. The mathematical formulation of a generalized Hooke’s law for blood vessels. Biomaterials, 2007, 28(24): 3569-3578.
- 57. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech, 1983, 16(1): 1-12.
- 58. Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech, 1979, 12(6): 423-436.
- 59. Humphrey J D, Yin F C. A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys J, 1987, 52(4): 563-570.
- 60. Holzapfel G A, Gasser T C, Ogden R W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast, 2000, 61(1-3): 1-48.
- 61. Holzapfel G A, Gasser T C, Stadler M. A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur J Mech A/Solid, 2002, 21(3): 441-463.
- 62. Gasser T C, Ogden R W, Holzapfel G A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface, 2006, 3(6): 15-35.
- 63. Sáez P, Peña E, Martínez M A. A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries. Ann Biomed Eng, 2014, 42(6): 1158-1169.
- 64. Holzapfel G A, Ogden R W. Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues. Eur J Mech A/Solids, 2017, 66: 193-200.
- 65. Li K, Ogden R W, Holzapfel G A. Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur J Mech, 2016, 57: 178-193.
- 66. Bevan J A, Hwa J J. Myogenic tone and cerebral vascular autoregulation: The role of a stretch-dependent mechanism. Ann Biomed Eng, 1985, 13(3-4): 281-286.
- 67. Holzapfel G A, Ogden R W, Sherifova S. On fibre dispersion modelling of soft biological tissues: A review. Proc Math Phys Eng Sci, 2019, 475: 2224.
- 68. Holzapfel G A, Gasser T C. Computational stress-deformation analysis of arterial walls including high-pressure response. Int J Cardiol, 2007, 116(1): 78-85.
- 69. Li K, Ogden R W, Holzapfel G A. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J R Soc Interface, 2018, 15(138): 20170766.
- 70. Rachev A, Shazly T. A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen. J Mech Behav Biomed Mater, 2019, 90: 61-72.
- 71. Wang Y, Zeinali-Davarani S, Zhang Y. Arterial mechanics considering the structural and mechanical contributions of ECM constituents. J Biomech, 2016, 49(12): 2358-2365.
- 72. Carboni M, Desch G W, Weizsacker H W. Passive mechanical properties of porcine left circumflex artery and its mathematical description. Med Eng Phys, 2007, 29(1): 8-16.
- 73. Humphrey J D. Cardiovascular solid mechanics: Cells, tissues, and organs. Springer Science & Business Media, 2013.
- 74. Hayashi K, Hirayama E. Age-related changes of wall composition and collagen cross-linking in the rat carotid artery – in relation with arterial mechanics. J Mech Behav Biomed Mater, 2017, 65: 881-889.
- 75. Annovazzi L, Genna F. An engineering, multiscale constitutive model for fiber-forming collagen in tension. J Biomed Mater Res A, 2010, 92A(1): 254-266.
- 76. Chen H, Liu Y, Zhao X, et al. A micromechanics finite-strain constitutive model of fibrous tissue. J Mech Phys Solids, 2011, 59(9): 1823-1837.
- 77. Sigaeva T, Sommer G, Holzapfel G, et al. Anisotropic residual stresses in arteries. J R Soc Interface, 2019, 16(151): 20190029.
- 78. Leng X, Davis L, Deng X, et al. An inverse analysis of cohesive zone model parameter values for human fibrous cap mode I tearing. arXiv, 2018: 1806.05013.
- 79. Ahuja A, Noblet J N, Trudnowski T, et al. Biomechanical material characterization of stanford type-B dissected porcine aortas. Front Physiol, 2018, 9: 1317.
- 80. Ayyalasomayajula V, Pierrat B, Badel P. A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia. Biomech Model Mechanobiol, 2019, 18(5): 1507-1528.
- 81. Lee Y U, Naito Y, Kurobe H, et al. Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. J Biomech, 2013, 46(13): 2277-2282.
- 82. Cornelissen A J, Dankelman J, Vanbavel E, et al. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: A model study. Am J Physiol Heart Circ Physiol, 2002, 282(6): H2224-H2237.
- 83. Yang J, Clark J W Jr, Bryan R M, et al. The myogenic response in isolated rat cerebrovascular arteries: Smooth muscle cell model. Med Eng Phys, 1002, 14(7): 691-709.
- 84. Algranati D, Kassab G S, Lanir Y. Flow restoration post revascularization predicted by stenosis indexes: Sensitivity to hemodynamic variability. Am J Physiol Heart Circ Physiol, 2013, 305(2): H145-H154.
- 85. Algranati D, Kassab G S, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol, 2011, 300(3): H1090-H1100.
- 86. Algranati D, Kassab G S, Lanir Y. Mechanisms of myocardium-coronary vessel interaction. Am J Physiol Heart Circ Physiol, 2010, 298(3): H861-H873.
- 87. Lu Y, Wu H, Li J, et al. Passive and active triaxial wall mechanics in a two-layer model of porcine coronary artery. Sci Rep, 2017, 7(1): 13911.
- 88. Ramachandra A B, Humphrey J D. Biomechanical characterization of murine pulmonary arteries. J Biomech, 2019, 84: 18-26.
- 89. Haspinger D C, Murtada S L, Niestrawska J A, et al. Numerical analyses of the interrelation between extracellular smooth muscle orientation and intracellular filament overlap in the human abdominal aorta. ZAMM, 2018, 98(12): 2198-2221.
- 90. Millman B M. The filament lattice of striated muscle. Physiol Rev, 1998, 78(2): 359-391.
- 91. Milewicz D M, Trybus K M, Guo D C, et al. Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol, 2017, 37(1): 26-34.
- 92. Chen P Y, Qin L, Li G, et al. Smooth muscle cell reprogramming in aortic aneurysms. Cell Stem Cell, 2020, 26(4): 542-557.
- 93. Fan T, Zhou Z, Fang W, et al. Morphometry and hemodynamics of coronary artery aneurysms caused by atherosclerosis. Atherosclerosis, 2019, 284: 187-193.
- 94. Huang X, Liu D, Yin X, et al. Morphometry and hemodynamics of posterior communicating artery aneurysms: Ruptured versus unruptured. J Biomech, 2018, 76: 35-44.
- 95. Lu D, Kassab G S. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface, 2011, 8(63): 1379-1385.
- 96. Kassab G S, Navia J A. Biomechanical considerations in the design of graft: The homeostasis hypothesis. Annu Rev Biomed Eng, 2006, 8: 499-535.
- 97. Murtada S I, Humphrey J D, Holzapfel G A. Multiscale and multiaxial mechanics of vascular smooth muscle. Biophys J, 2017, 113(3): 714-727.
- 98. Coccarelli A, Edwards D H, Aggarwal A, et al. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics. J R Soc Interface, 2018, 15(139): 20170732.
-
Previous Article
心血管生物力学:心血管疾病诊疗、预警的医工交叉解决方案 -
Next Article
Biomechanical models and numerical studies of atherosclerotic plaque