1. |
Shafiee A, Atala A. Tissue engineering: toward a new era of medicine. Annu Rev Med, 2017, 68(1): 29-40.
|
2. |
Hollister S J. Porous scaffold design for tissue engineering. Nat Mater, 2005, 4(7): 518-524.
|
3. |
Zhang Y S, Khademhosseini A. Advances in engineering hydrogels. Science, 2017, 356(6337): f3627.
|
4. |
Spicer C D. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem, 2020, 11(2): 184-219.
|
5. |
Hixon K R, Lu T, Sell S A. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater, 2017, 62: 29-41.
|
6. |
Shah N J, Mao A S, Shih T Y, et al. An injectable bone marrow-like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat Biotechnol, 2019, 37(3): 293-302.
|
7. |
Shih T Y, Blacklow S O, Li A W, et al. Injectable, tough alginate cryogels as cancer vaccines. Adv Healthc Mater, 2018, 7(10): e1701469.
|
8. |
Im P, Kim J. On-Demand macroscale delivery system based on a macroporous cryogel with a high drug loading capacity for enhanced cancer therapy. ACS Biomater Sci Eng, 2018, 4(10): 3498-3505.
|
9. |
Henderson T M A, Ladewig K, Haylock D N, et al. Cryogels for biomedical applications. J Mater Chem B, 2013, 1(21): 2682-2695.
|
10. |
Okay O. Polymeric cryogels: macroporous gels with remarkable properties. New York: Springer International Publishing, 2014.
|
11. |
Razavi M, Qiao Y, Thakor A S. Three-dimensional cryogels for biomedical applications. J Biomed Mater Res A, 2019, 107(12): 2736-2755.
|
12. |
Kim I, Lee S S, Bae S, et al. Heparin functionalized injectable cryogel with rapid Shape-Recovery property for neovascularization. Biomacromolecules, 2018, 19(6): 2257-2269.
|
13. |
Béduer A, Piacentini N, Aeberli L, et al. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomater, 2018, 76: 71-79.
|
14. |
Eggermont L J, Rogers Z J, Colombani T, et al. Injectable cryogels for biomedical applications. Trends Biotechnol, 2020, 38(4): 418-431.
|
15. |
Tong X, Yang F. Recent progress in developing injectable matrices for enhancing cell delivery and tissue regeneration. Adv Healthc Mater, 2018, 7(7): e1701065.
|
16. |
Villard P, Rezaeeyazdi M, Colombani T, et al. Autoclavable and injectable cryogels for biomedical applications. Adv Healthc Mater, 2019, 8(17): e1900679.
|
17. |
Hu W, Wang Z, Xiao Y, et al. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci, 2019, 7(3): 843-855.
|
18. |
Serex L, Braschler T, Filippova A, et al. Pore size manipulation in 3D printed cryogels enables selective cell seeding. Adv Mater Technol, 2018, 3(4): 1700340.
|
19. |
Memic A, Colombani T, Eggermont L J, et al. Latest advances in cryogel technology for biomedical applications. Adv Ther (Weinh), 2019, 2(4): 1800114.
|
20. |
Koons G L, Diba M, Mikos A G. Materials design for bone-tissue engineering. Nat Rev Mater, 2020, 5(8): 584-603.
|
21. |
Hixon K R, Eberlin C T, LU T, et al. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Biomed Mater, 2017, 12(2): 025005.
|
22. |
Salgado C L, Grenho L, Fernandes M H, et al. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration. J Biomed Mater Res A, 2016, 104(1): 57-70.
|
23. |
Shalumon K T, Kuo C, Wong C, et al. Gelatin/nanohyroxyapatite cryogel embedded poly(lactic-co-glycolic acid)/nanohydroxyapatite microsphere hybrid scaffolds for simultaneous bone regeneration and load-bearing. Polymers, 2018, 10(6): 620.
|
24. |
Shalumon K T, Liao H T, Kuo C Y, et al. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Mater Sci Eng; C, 2019, 104: 109855.
|
25. |
Gu L, Zhang J, Li L, et al. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Biomed Mater, 2019, 14(4): 045001.
|
26. |
Ferreira F V, Souza L P, Martins T, et al. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale, 2019, 11(42): 19842-19849.
|
27. |
Lee S S, Kim J H, Jeong J, et al. Sequential growth factor releasing double cryogel system for enhanced bone regeneration. Biomaterials, 2020, 257: 120223.
|
28. |
Han M E, Kang B J, Kim S H, et al. Gelatin-based extracellular matrix cryogels for cartilage tissue engineering. Journal of Industrial and Engineering Chemistry, 2017, 45: 421-429.
|
29. |
Jeznach O, Kołbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A, 2018, 106(10): 2762-2776.
|
30. |
Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res, 2017, 5(1): 17014.
|
31. |
He T, Li B, Colombani T, et al. Hyaluronic acid-based shape memory cryogel scaffolds for focal cartilage defect repair. Osteoarthritis and Cartilage, 2020, 28: S504.
|
32. |
Gupta A, Bhat S, Chaudhari B P, et al. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits. J Tissue Eng Regen Med, 2017, 11(6): 1689-1700.
|
33. |
Zhao X, Guo B, Wu H, et al. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun, 2018, 9(1): 2784.
|
34. |
Li M, Zhang Z, Liang Y, et al. Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair. ACS Appl Mater Interfaces, 2020, 12(32): 35856-35872.
|
35. |
Wang H M, Chou Y T, Wen Z H, et al. Novel biodegradable porous scaffold applied to skin regeneration. PLoS One, 2013, 8(6): e56330.
|
36. |
Tyeb S, Shiekh P A, Verma V, et al. Adipose-derived stem cells (ADSCs) loaded Gelatin-Sericin-Laminin cryogels for tissue regeneration in diabetic wounds. Biomacromolecules, 2020, 21(2): 294-304.
|
37. |
Priya S G, Gupta A, Jain E, et al. Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds. ACS Appl Mater Interfaces, 2016, 8(24): 15145-15159.
|
38. |
Zeng Y, Zhu L, Han Q, et al. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomater, 2015, 25: 291-303.
|
39. |
Jurga M, Dainiak M B, Sarnowska A, et al. The performance of laminin-containing cryogel scaffolds in neural tissue regeneration. Biomaterials, 2011, 32(13): 3423-3434.
|
40. |
Béduer A, Braschler T, Peric O, et al. A compressible scaffold for minimally invasive delivery of large intact neuronal networks. Adv Healthc Mater, 2015, 4(2): 301-312.
|
41. |
Wieringa P A, de Pinho A R G, Micera S, et al. Biomimetic architectures for peripheral nerve repair: a review of biofabrication strategies. Adv Healthc Mater, 2018, 7(8): e1701164.
|
42. |
Singh A, Shiekh P A, Das M, et al. Aligned Chitosan-Gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization, and in vitro evaluation. Biomacromolecules, 2019, 20(2): 662-673.
|
43. |
Tao J, Hu Y, Wang S, et al. A 3D-engineered porous conduit for peripheral nerve repair. Sci Rep, 2017, 7(1): 46038.
|