1. |
赖虹宇, 冯静雯, 王毅, 等. 抑郁症和精神分裂症患者静息态脑电信号的分类研究. 生物医学工程学杂志, 2019, 36(6): 916-923.
|
2. |
Wolkin A, Sanfilipo M, Wolf A P, et al. Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry, 1992, 49(12): 959-965.
|
3. |
Tsanas A, Little M A, Mcsharry P E, et al. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease. IEEE Trans Biomed Eng, 2012, 59(5): 1264-1271.
|
4. |
Liu Zhenyu, Kang Huanyu, Feng Lei, et al. Speech pause time: a potential biomarker for depression detection//2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Kansas: IEEE, 2017: 2020-2025.
|
5. |
Stasak B, Epps J, Lawson A. Analysis of phonetic markedness and gestural effort measures for acoustic speech-based depression classification//2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), San Antonio: IEEE Computer Society, 2017: 165-170.
|
6. |
田德财, 张新卿. 交互式语音应答系统在抑郁障碍筛查中的应用. 中国神经精神疾病杂志, 2010, 36(11): 695-697.
|
7. |
张静, 潘忠德, 桂超, 等. 精神分裂症患者语音信号的临床分析. 上海精神医学, 2016, 28(2): 95-102.
|
8. |
潘玮, 汪静莹, 刘天俐, 等. 基于语音的抑郁症识别. 科学通报, 2018, 63(20): 2081-2092.
|
9. |
Jiang Haihua, Hu Bin, Liu Zhenyu, et al. Investigation of different speech types and emotions for detecting depression using different classifiers. Speech Communication, 2017, 90: 39-46.
|
10. |
田熙燕, 徐君鹏, 杜留锋. 基于语谱图和卷积神经网络的语音情感识别. 河南科技学院学报: 自然科学版, 2017, 45(2): 62-68.
|
11. |
He Lang, Cao Cui. Automated depression analysis using convolutional neural networks from speech. J Biomed Inform, 2018, 83: 103-111.
|
12. |
Zheng L, Wang S, Tian L, et al. Query-adaptive late fusion for image search and person re-identification//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston: IEEE, 2015: 1741–1750.
|
13. |
Zhang X, Zhang H, Zhang Y, et al. Deep fusion of multiple semantic cues for complex event recognition. IEEE Trans Image Process, 2016, 25(3): 1033-1046.
|
14. |
Liu Ziqiong, Wang Shengjin, Zheng Liang, et al. Robust ImageGraph: rank-level feature fusion for image search. IEEE Transactions on Image Processing, 2017, 26(7): 3128-3141.
|
15. |
Qi Yu, Wang Yueming, Zheng Xiaoxiang, et al. Robust feature learning by stacked autoencoder with maximum correntropy criterion//2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence: IEEE, 2014: 6716-6720.
|
16. |
Yuan Xiaofeng, Huang Biao, Wang Yalin, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE. IEEE Trans Industr Inform, 2018, 14(7): 3235-3243.
|
17. |
Lv Fei, Han Min, Qiu Tie. Remote sensing image classification based on ensemble extreme learning machine with stacked autoencoder. IEEE Access, 2017, 5: 9021-9031.
|
18. |
Tao Chao, Pan Hongbo, Li Yansheng, et al. Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442.
|
19. |
Jiang Guoqian, He Haibo, Xie Ping, et al. Stacked multilevel-denoising autoencoders: a new representation learning approach for wind turbine gearbox fault diagnosis. IEEE Trans Instrum Meas, 2017, 66(9): 2391-2402.
|
20. |
Dai Jie, Hui Song, Sheng Gehao, et al. Cleaning method for status monitoring data of power equipment based on stacked denoising autoencoders. IEEE Access, 2017, 5: 22863-22870.
|
21. |
Lei You, Yuan Wang, Wang Hongpeng, et al. A skin segmentation algorithm based on stacked autoencoders. IEEE Trans Multimedia, 2017, 19(4): 740-749.
|
22. |
Qi Yumei, Shen Changqing, Wang Dong, et al. Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery. IEEE Access, 2017, 5(99): 15066-15079.
|
23. |
Sheehan D V, Lecrubier Y, Sheehan K H, et al. The Mini-international neuropsychiatric interview (M. I. N. I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry, 1998, 59(20): 22-33.
|
24. |
Dsm A A, Association A, Association A P, et al. Diagnostic and statistical manual of mental disorders. Psychiatry Res, 2000, 25(2): 1-4.
|
25. |
de Jong N H, Wempe T. Praat script to detect syllable nuclei and measure speech rate automatically. Behav Res Methods, 2009, 41(2): 385-390.
|
26. |
Sakar B E, Isenkul M E, Sakar C O, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform, 2013, 17(4): 828-834.
|
27. |
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Comput, 2006, 18(7): 1527-1554.
|
28. |
Liu Yuchuan, Tan Xiaoheng, Li Yongming, et al. Weighted local discriminant preservation projection ensemble algorithm with embedded micro-noise. IEEE Access, 2019, 7: 143814-143828.
|
29. |
Lin Jianhai, Lu KAI, Sun Yuxuan. a novel relief feature selection algorithm based on mean-variance model. System Simulation Technology, 2013, 8(16): 3921-3929.
|
30. |
Donoho D, Jin J. Higher criticism thresholding: optimal feature selection when useful features are rare and weak. Proceedings of the national academy of sciences, 2008, 105(39): 14790-14795.
|
31. |
Jolliffe I T. Principal component analysis. Journal of Marketing Research, 2002, 87(4): 513.
|
32. |
Li C H, Kuo B C, Lin C T. LDA-Based clustering algorithm and its application to an unsupervised feature extraction. IEEE Transactions on Fuzzy Systems, 2011, 19(1): 152-163.
|
33. |
Mulfari D, Meoni G, Marini M, et al. Machine learning assistive application for users with speech disorders. Applied Soft Computing, 2021, 103: 107147.
|