1. |
丁其川, 熊安斌, 赵新刚, 等. 基于表面肌电的运动意图识别方法研究及应用综述. 自动化学报, 2016, 42(1): 13-25.
|
2. |
Meng Qingyun, Meng Qiaoling, Yu Hongliu, et al. A survey on sEMG control strategies of wearable hand exoskeleton for rehabilitation//2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan: IEEE, 2017: 165-169.
|
3. |
Phukpattaranont P, Thongpanja S, Anam K, et al. Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal. Med Biol Eng Comput, 2018, 56(12): 2259-2271.
|
4. |
丁帅, 王亮. 基于块稀疏贝叶斯学习的肌电信号特征提取. 仪器仪表学报, 2014, 35(12): 2731-2738.
|
5. |
Chen X, Yin Y, Fan Y. EMG oscillator model-based energy kernel method for haracterizing muscle intrinsic property under isometric contraction. Chin Sci Bull, 2014, 59(14): 1556-1567.
|
6. |
Chen X, Zeng Y, Yin Y. Improving the transparency of an exoskeleton knee joint based on the understanding of motor intent using energy kernel method of EMG. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(6): 577-588.
|
7. |
Zeng Y, Yang J, Peng C, et al. Evolving gaussian process autoregression based learning of human motion intent using improved energy kernel method of EMG. IEEE Trans Biomed Eng, 2019, 66(9): 2556-2565.
|
8. |
石欣, 朱家庆, 秦鹏杰, 等. 基于改进能量核的下肢表面肌电信号特征提取方法. 仪器仪表学报, 2020, 41(1): 121-128.
|
9. |
Yang Kuo, Zhang Zhen. Real-time pattern recognition for hand gesture based on ANN and surface EMG//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing: IEEE, 2019: 799-802.
|
10. |
Abdel-Hamid O, Mohamed A, Jiang H, et al. Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio, Speech, Language Process, 2014, 22(10): 1533-1545.
|
11. |
Pinzón-Arenas J O, Jiménez-Moreno R, Herrera-Benavides J E. Convolutional neural network for hand gesture recognition using 8 different EMG signals//2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA). Bucaramanga: IEEE, 2019: 1-5.
|
12. |
Atzori M, Cognolato M, Müller H. Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front Neurorobot, 2016, 10: 9.
|
13. |
Geng W, Du Y, Jin W, et al. Gesture recognition by instantaneous surface EMG images. Sci Rep, 2016, 6: 36571.
|
14. |
Wei W, Wong Y, Du Y, et al. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface. Pattern Recognit Lett, 2019, 119: 131-138.
|
15. |
Zhai X, Jelfs B, Chan R M, et al. Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front Neurosci, 2017, 11: 379.
|
16. |
He Yunan, Fukuda O, Bu Nan, et al. Surface EMG pattern recognition using long short-term memory combined with multilayer perceptron//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu: IEEE, 2018: 5636-5639.
|
17. |
Wu Yuheng, Zheng Bin, Zhao Yongting. Dynamic gesture recognition based on LSTM-CNN//2018 Chinese Automation Congress (CAC), Xi’an: IEEE, 2018: 2446-2450.
|
18. |
Staudenmann D, Roeleveld K, Stegeman D F, et al. Methodological aspects of SEMG recordings for force estimation--a tutorial and review. J Electromyogr Kinesiol, 2010, 20(3): 375-387.
|
19. |
Du Y C, Lin C H, Shyu L Y, et al. Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis. Expert Syst Appl, 2010, 37(6): 4283-4291.
|
20. |
McComas A J, Mrozek K. The electrical properties of muscle fiber membranes in dystrophia myotonica and myotonia congenita. J Neurol Neurosurg Psychiatry, 1968, 31(5): 441-447.
|
21. |
Trajano G S, Nosaka K, Blazevich A J. Neurophysiological mechanisms underpinning stretch-induced force loss. Sports Med, 2017, 47(8): 1531-1541.
|
22. |
李伟, 杨向东, 陈恳. 基于CNN和RNN联合网络的心音自动分类. 计算机工程与设计, 2020, 41(1): 46-51.
|
23. |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90.
|